搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于矢量化差分相位的单分布源解耦二维波达方向估计

代正亮 崔维嘉 王大鸣 张彦奎

引用本文:
Citation:

基于矢量化差分相位的单分布源解耦二维波达方向估计

代正亮, 崔维嘉, 王大鸣, 张彦奎

Decoupled two-dimensional direction of arrival estimation of single distributed source by vectoring differential phases

Dai Zheng-Liang, Cui Wei-Jia, Wang Da-Ming, Zhang Yan-Kui
PDF
导出引用
  • 在分布源(包括相干分布源和非相干分布源)的二维波达方向估计中,均匀圆阵由于可实现全方位测角、具有较高的分辨率,得到了广泛的应用,然而现有的估计算法均需要谱峰搜索和特征值分解,复杂度较高.针对此问题,考虑单个相干分布源或非相干分布源入射两种情况,提出了一种基于矢量化差分相位的解耦二维波达方向快速估计算法.该算法首先基于空间频率近似模型,证明了任意单个分布源入射时,均匀圆阵中不同阵元接收信号间的差分相位均不受角度扩展参数的影响;基于此特性,通过获取差分相位即可实现中心波达角的解耦合;接下来,提取采样协方差矩阵的严格上三角元素相位,即对应于各阵元间的差分相位,并进行矢量化处理,最终将波达方向估计问题转化为一个最小二乘问题,从而直接得到闭式解,避免了谱峰搜索和特征值分解运算,大幅度降低了复杂度.理论分析和仿真实验表明,所提算法具有较高的估计精度,并且无需角信号分布的先验信息,同时具备较低的计算复杂度和硬件复杂度,有利于复杂环境下阵列测向等工程实践.
    In practical applications such as radar, sonar, and mobile communications, transmitted signals are often affected by the scattering and reflection phenomena, which causes the signal energy received by the antenna array to be distributed into a certain space. In this case, a distributed source model will be more applicable. In general, the distributed sources have been classified as coherently distributed (CD) source and incoherently distributed (ID) source, which prove to be suitable for the cases of slowly time-varying and rapidly time-varying channels, respectively.In this paper, we consider the two-dimensional direction of arrival (DOA) estimation of distributed sources (including CD source or ID source). Specifically, uniform circular array (UCA) is widely used because of its ability to measure full azimuth angle and high resolution. However, the existing estimation algorithms all require spectral peak searching and the eigenvalue decomposition, which can bring a large computational complexity. To solve this problem, a decoupled rapid two-dimensional DOA estimation algorithm is proposed based on vectoring differential phases considering the two cases of single CD source and ID source. Firstly, based on spatial frequency approximation model, it is proved that none of differential phases between the received signals of different sensors in the UCA is affected by angle spread parameters when there is only a single distributed source. Under the premise of such a property, the central DOAs can be decoupled through obtaining the differential phases. Next, we can obtain the phase angles of strictly upper triangular elements in the sample covariance matrix, which correspond to differential phases between different sensors. Finally, by vectoring these differential phases, the central azimuth and elevation DOAs are estimated in the closed form from a least-squared problem, where the spectral peak searching and eigenvalue decomposition can be avoided, hence the computational complexity is reduced greatly. Theoretical analysis and simulation results show that the proposed algorithm has higher estimation accuracy and does not require prior information about the distribution of angular signals. With both low computational complexity and low hardware complexity, the proposed algorithm is beneficial to the engineering practice of array direction finding in complex environment.
      通信作者: 代正亮, xinxidailiang@outlook.com
    • 基金项目: 国家自然科学基金(批准号:61401513)资助的课题.
      Corresponding author: Dai Zheng-Liang, xinxidailiang@outlook.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.61401513).
    [1]

    Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 62 144302]

    [2]

    Xiong W, Picheral J, Marcss S 2017 Digital Signal Process. 63 155

    [3]

    Ba B, Liu G C, Fan Z, Li T, Fan Z, Lin Y C, Wang Y 2015 Acta Phys. Sin. 64 078403 (in Chinese) [巴斌, 刘国春, 李韬, 范展, 林禹丞, 王瑜 2015 64 078403]

    [4]

    Jiang H, Zhou J, Hisakazu K, Shao G F 2014 Acta Phys. Sin. 63 048702 (in Chinese) [江浩, 周杰, 菊池久和, 邵根富 2014 63 048702]

    [5]

    Zheng Z 2011 Ph. D. Dissertation(Chengdu: University of Electronic Science and Technology) (in Chinese) [郑植2011 博士学位论文 (成都: 电子科技大学)]

    [6]

    Valaee S, Champagne B, Kabal P 1995 IEEE Trans. Signal Process. 43 2144

    [7]

    Shahbazpanahi S, Valaee S, Bastani M H 2001 IEEE Trans. Signal Process. 49 2169

    [8]

    Zheng Z, Li G 2013 Multi. Sys. Signal Process. 24 573

    [9]

    Yang X M, Li G J, Chi C K, Zheng Z, Yeo T S 2015 Circ. Sys. Signal Process. 34 3697

    [10]

    Cao R Z, Gao F, Zhang X 2016 IEEE Trans. Signal Process. 64 1

    [11]

    Hassanien A, Shahbazpanahi S, Gershman A B 2004 IEEE Trans. Signal Process. 52 280

    [12]

    Shahbazpanahi S, Valaee S, Gershman A B 2004 IEEE Trans. Signal Process. 52 592

    [13]

    Sieskul B T 2010 IEEE Trans. Vehicul. Technol. 59 1534

    [14]

    Yang X, Li G J, Zheng Z 2014 J. Electron. Informat. Technol. 36 164 (in Chinese) [杨学敏, 李广军, 郑植 2014 电子与信息学报 36 164]

    [15]

    Yang X M, Zheng Z, Hu B 2016 Electro. Lett. 52 262

    [16]

    Boujemaa H 2005 European Trans. Telecommun. 16 557

    [17]

    Zheng Z, Li G, Teng Y 2012 Circ. Sys. Signal Process. 31 255

    [18]

    Dai Z L, Ba B, Cui W J, Sun Y M 2017 IEEE Acce. 99 1

    [19]

    Hu A, L T, Gao H, Zhang Z, Yang S 2014 IEEE J. Sel. Topics in Signal Process. 8 996

    [20]

    Dai Z L, Cui W J, Ba B, Wang D M, Sun Y M 2017 Sens. 17 1300

    [21]

    Cao M Y, Huang L, Qian C, Xue J Y, So H C 2015 Signal Process. 106 41

    [22]

    Lee J, Song I, Kwon H, Lee S R 2003 Signal Process. 83 1789

    [23]

    Nam J G, Lee S H, Lee K K 2014 IEEE Anten. Wire. Propag. Lett. 13 415

    [24]

    Guo X, Wan Q, Shen X, Dou H 2011 Tur. J. Elec. Enging. Com. Sci. 19 445

    [25]

    L T, Tan F, Gao H, Yang G 2016 Signal Process. 121 30

    [26]

    Sundaram K R, MalliK R K, Murthy U M S 2000 IEEE Trans. on Aero. Electro. Sys. 36 1391

    [27]

    Ballal T, Blealley C J 2008 IEEE Signal Process. Lett. 15 853

    [28]

    Chen X, Liu Z, Wei X 2016 IEEE Anten. Wire. Propag. Lett. 99 1

  • [1]

    Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 62 144302]

    [2]

    Xiong W, Picheral J, Marcss S 2017 Digital Signal Process. 63 155

    [3]

    Ba B, Liu G C, Fan Z, Li T, Fan Z, Lin Y C, Wang Y 2015 Acta Phys. Sin. 64 078403 (in Chinese) [巴斌, 刘国春, 李韬, 范展, 林禹丞, 王瑜 2015 64 078403]

    [4]

    Jiang H, Zhou J, Hisakazu K, Shao G F 2014 Acta Phys. Sin. 63 048702 (in Chinese) [江浩, 周杰, 菊池久和, 邵根富 2014 63 048702]

    [5]

    Zheng Z 2011 Ph. D. Dissertation(Chengdu: University of Electronic Science and Technology) (in Chinese) [郑植2011 博士学位论文 (成都: 电子科技大学)]

    [6]

    Valaee S, Champagne B, Kabal P 1995 IEEE Trans. Signal Process. 43 2144

    [7]

    Shahbazpanahi S, Valaee S, Bastani M H 2001 IEEE Trans. Signal Process. 49 2169

    [8]

    Zheng Z, Li G 2013 Multi. Sys. Signal Process. 24 573

    [9]

    Yang X M, Li G J, Chi C K, Zheng Z, Yeo T S 2015 Circ. Sys. Signal Process. 34 3697

    [10]

    Cao R Z, Gao F, Zhang X 2016 IEEE Trans. Signal Process. 64 1

    [11]

    Hassanien A, Shahbazpanahi S, Gershman A B 2004 IEEE Trans. Signal Process. 52 280

    [12]

    Shahbazpanahi S, Valaee S, Gershman A B 2004 IEEE Trans. Signal Process. 52 592

    [13]

    Sieskul B T 2010 IEEE Trans. Vehicul. Technol. 59 1534

    [14]

    Yang X, Li G J, Zheng Z 2014 J. Electron. Informat. Technol. 36 164 (in Chinese) [杨学敏, 李广军, 郑植 2014 电子与信息学报 36 164]

    [15]

    Yang X M, Zheng Z, Hu B 2016 Electro. Lett. 52 262

    [16]

    Boujemaa H 2005 European Trans. Telecommun. 16 557

    [17]

    Zheng Z, Li G, Teng Y 2012 Circ. Sys. Signal Process. 31 255

    [18]

    Dai Z L, Ba B, Cui W J, Sun Y M 2017 IEEE Acce. 99 1

    [19]

    Hu A, L T, Gao H, Zhang Z, Yang S 2014 IEEE J. Sel. Topics in Signal Process. 8 996

    [20]

    Dai Z L, Cui W J, Ba B, Wang D M, Sun Y M 2017 Sens. 17 1300

    [21]

    Cao M Y, Huang L, Qian C, Xue J Y, So H C 2015 Signal Process. 106 41

    [22]

    Lee J, Song I, Kwon H, Lee S R 2003 Signal Process. 83 1789

    [23]

    Nam J G, Lee S H, Lee K K 2014 IEEE Anten. Wire. Propag. Lett. 13 415

    [24]

    Guo X, Wan Q, Shen X, Dou H 2011 Tur. J. Elec. Enging. Com. Sci. 19 445

    [25]

    L T, Tan F, Gao H, Yang G 2016 Signal Process. 121 30

    [26]

    Sundaram K R, MalliK R K, Murthy U M S 2000 IEEE Trans. on Aero. Electro. Sys. 36 1391

    [27]

    Ballal T, Blealley C J 2008 IEEE Signal Process. Lett. 15 853

    [28]

    Chen X, Liu Z, Wei X 2016 IEEE Anten. Wire. Propag. Lett. 99 1

  • [1] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器.  , 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [2] 张倩, 王亚辉, 张明江, 张建忠, 乔丽君, 王涛, 赵乐. 毫米级高分辨率的混沌激光分布式光纤测温技术.  , 2019, 68(10): 104208. doi: 10.7498/aps.68.20190018
    [3] 张揽月, 丁丹丹, 杨德森, 时胜国, 朱中锐. 阵元随机均匀分布球面阵列联合噪声源定位方法.  , 2017, 66(1): 014303. doi: 10.7498/aps.66.014303
    [4] 代正亮, 崔维嘉, 巴斌, 张彦奎. 对称旋转不变相干分布式非圆信号二维波达方向估计.  , 2017, 66(22): 220701. doi: 10.7498/aps.66.220701
    [5] 巴斌, 刘国春, 李韬, 林禹丞, 王瑜. 基于哈达玛积扩展子空间的到达时间和波达方向联合估计.  , 2015, 64(7): 078403. doi: 10.7498/aps.64.078403
    [6] 顾源, 石荣晔, 王延辉. 分布式反馈激光抽运铯磁力仪灵敏度相关参数研究.  , 2014, 63(11): 110701. doi: 10.7498/aps.63.110701
    [7] 文锋, 王建华. 二维均匀流与重力短峰波相互作用解析.  , 2014, 63(9): 094701. doi: 10.7498/aps.63.094701
    [8] 王春妮, 马军. 分布式电流刺激抑制心肌组织中螺旋波.  , 2013, 62(8): 084501. doi: 10.7498/aps.62.084501
    [9] 胡柏林, 马军, 李凡, 蒲忠胜. 神经元网络中分布式电流诱导靶波机理研究.  , 2013, 62(5): 058701. doi: 10.7498/aps.62.058701
    [10] 马成举, 任立勇, 唐峰, 屈恩世, 徐金涛, 梁权, 王舰, 韩旭. 基于分布式光纤Bragg光栅传感技术的光缆卷盘静态压力研究.  , 2012, 61(5): 054702. doi: 10.7498/aps.61.054702
    [11] 汤益丹, 沈光地, 郭霞, 关宝璐, 蒋文静, 韩金茹. 带介质分布式Bragg反射镜结构高性能共振腔发光二极管的研究.  , 2012, 61(1): 018503. doi: 10.7498/aps.61.018503
    [12] 郑建洲, 于清旭, 关寿华, 董斌, 曹晓君, 芦永军, 吴云峰. 利用部分相干光和同心角偏差透镜列阵实现二维靶面均匀辐照.  , 2012, 61(15): 154205. doi: 10.7498/aps.61.154205
    [13] 乔学光, 丁锋, 贾振安, 傅海威, 营旭东, 周锐, 宋娟. 高精度准分布式光纤光栅地震检波解调系统的研究.  , 2011, 60(7): 074221. doi: 10.7498/aps.60.074221
    [14] 朱樟明, 钟波, 郝报田, 杨银堂. 一种考虑温度的分布式互连线功耗模型.  , 2009, 58(10): 7124-7129. doi: 10.7498/aps.58.7124
    [15] 黄虎. 二维均匀流作用的线性表面张力-重力短峰波解析解.  , 2009, 58(6): 3655-3657. doi: 10.7498/aps.58.3655
    [16] 丁 锐, 王志良, 小仓久直. 二维各向同性均匀随机介质中平面波的传播及其局域性.  , 2008, 57(9): 5519-5528. doi: 10.7498/aps.57.5519
    [17] 孙琪真, 刘德明, 王 健. 基于环结构的新型分布式光纤振动传感系统.  , 2007, 56(10): 5903-5908. doi: 10.7498/aps.56.5903
    [18] 周晓军, 杜 东, 龚俊杰. 偏振模耦合分布式光纤传感器空间分辨率研究.  , 2005, 54(5): 2106-2110. doi: 10.7498/aps.54.2106
    [19] 张承福, 柯孚久. 非均匀磁化等离子体中的二维漂移孤波.  , 1985, 34(3): 298-305. doi: 10.7498/aps.34.298
    [20] 任朗. 线形天线阵的单位圆上零点分布的一个普遍函数.  , 1962, 18(9): 449-466. doi: 10.7498/aps.18.449
计量
  • 文章访问数:  5946
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-29
  • 修回日期:  2018-02-06
  • 刊出日期:  2018-04-05

/

返回文章
返回
Baidu
map