搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于两级压缩感知的脉冲星时延估计方法

康志伟 吴春艳 刘劲 马辛 桂明臻

引用本文:
Citation:

基于两级压缩感知的脉冲星时延估计方法

康志伟, 吴春艳, 刘劲, 马辛, 桂明臻

Pulsar time delay estimation method based on two-level compressed sensing

Kang Zhi-Wei, Wu Chun-Yan, Liu Jin, Ma Xin, Gui Ming-Zhen
PDF
导出引用
  • 为了快速获得高精度的脉冲星累积脉冲轮廓时延估计,提出了一种基于两级压缩感知的时延估计方法.压缩感知主要包括三个部分:字典、测量矩阵、恢复算法,其中字典尺寸是影响压缩感知估计精度的重要因素.针对压缩感知中字典的原子数增加虽能提高估计精度但又带来计算量大的问题,该方法采用粗估计与精估计两级字典相结合,先利用粗估计字典原子间隔大的特点进行累积脉冲轮廓全相位估计,得到预估时延值,再利用精估计字典的原子间隔小且个数少适合局部估计的特点对累积脉冲轮廓进行精确时延估计.理论分析与实验结果表明:两级字典数据量比传统字典小两个数量级,在相同的时延估计精度下,该方法比传统压缩感知方法计算量大幅度减少,是一种能保持高估计精度并有效降低计算量的脉冲星时延估计方法.
    In the traditional compressed sensing algorithms, the precision of the time delay estimation is closely related to the number of atoms in the dictionary. The bigger the atom number, the smaller the atomic interval becomes, thus the higher the accuracy of the time delay estimation will be. However, the bigger atom number leads to a higher calculation load. Considering the limited calculation capacity of on-board computer, in order to fast obtain high-accuracy time delay estimation value of the integrated pulsar profile of pulsar in the X-ray pulsar-based navigation, we propose a time delay estimation method based on two-level compression sensing. Compressed sensing mainly includes three parts:the dictionary, the measurement matrix, and the recovery algorithm. Among them, the dictionary size is one of the most important factors that affect the estimation accuracy of the compressed sensing. Aiming to solve the problem of the greater computational load with the increase of the atom number in the dictionary of compressed sensing while improving the accuracy of estimation, we combine the rough estimation with the precision estimation as a two-level dictionary. In the first level, the global phase estimation of the low-dimensional integrated pulsar profile is carried out by making use of the feature of the large atomic interval and the small atomic amount of the rough estimation dictionary. Specifically, first, construct a coarse estimation dictionary according to the low-dimensional standard pulsar profile. Then make dimension reduction sampling on the low-dimensional integrated pulsar profile by the rough estimation measurement matrix based on low-dimensional Hadamard matrix. Finally, use an orthogonal matching pursuit method to obtain the predictive estimation of delay value. In the second level, by taking advantage of the small atomic intervals and numbers of the precise estimation dictionary which are suitable for local estimation, the exact time delay estimation of the high dimensional integrated pulsar profile is performed. Specifically, the original position is first corrected by using the predictive estimation of time delay value, that is, shifting the initial high-dimensional integrated pulsar profile as the input signal of the second level. Then the precise estimation dictionary is constructed according to the partial signal of the length of the high dimension standard pulse profile, using the precise estimation measurement matrix sampling on high-dimensional integrated pulsar profile to obtain measurement value. Finally, the optimal matching position is obtained through the recovery algorithm, which is then combined with the predictive estimation of delay value to calculate the prcis time delay estimation value. Theoretical analysis and experimental results show that the quantity of data in the two level dictionary is two orders of magnitude smaller than in the traditional dictionary. The proposed method reduces the computational complexity greatly compared with traditional compression sensing method in the same time delay estimation accuracy. Therefore, this method has the advantages of high precision and small calculation load.
      通信作者: 康志伟, jt_zwkang@hnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61501336,61772187)资助的课题.
      Corresponding author: Kang Zhi-Wei, jt_zwkang@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61501336, 61772187).
    [1]

    Hanson J E 1996 Ph. D. Dissertation (Stanford: Stanford University)

    [2]

    Sheikh S I 2005 Ph. D. Dissertation (Maryland: University of Maryland)

    [3]

    Liu J, Wu J, Xiong L, Fang J C, Liu G 2017 Chin. J. Electron 6 1325

    [4]

    Taylor J H 1992 Philos. T. R. Soc. A 341 117

    [5]

    Tran N D, Renaux A, Boyer R, Marcos S 2014 IEEE Trans. Aeros. Elec. Sys. 50 786

    [6]

    Kang Z W, He X, Liu J 2016 Optik 127 5050

    [7]

    Zhang H, Xu L P, Xie Q, Luo N 2011 Acta Phys. Sin. 60 049701 (in Chinese) [张华, 许录平, 谢强, 罗楠 2011 60 049701]

    [8]

    Fang H Y, Liu B, Li X P, Sun H F, Xue M F, Shen L R, Zhu J P 2016 Acta Phys. Sin. 65 119701 (in Chinese) [方海燕, 刘兵, 李小平, 孙海峰, 薛梦凡, 沈利荣, 朱金鹏 2016 65 119701]

    [9]

    Liu J, Fang J C, Wu J, Kang Z W, Ning X L 2014 IET Radar Sonar Navig 8 1154

    [10]

    Emadzadeh A A, Speyer J L 2011 IEEE Trans. Aeros. Elec. Sys. 47 2317

    [11]

    Emadzadeh A A, Speyer J L 2010 IEEE Trans. Sig. Proc. 58 4484

    [12]

    Li J X, Ke X Z 2010 Acta Astronom. Sin. 51 263 (in Chinese) [李建勋, 柯熙政 2010 天文学报 51 263]

    [13]

    Do T T, Gan L, Nguyen N H, Tran T D 2012 IEEE Trans. Sig. Proc. 60 139

    [14]

    Su Z, Xu L P, Gan W 2011 Sci. Sin.: Phys. Mech. Astron. 41 681 (in Chinese) [苏哲, 许录平, 甘伟 2011 中国科学: 物理学 力学 天文学 41 681]

    [15]

    Li S L, Liu K, Xiao L L 2014 Optik 125 1875

    [16]

    Shen L R, Li X P, Sun H F, Fang H Y, Xue M F 2016 Optik 127 4379

    [17]

    Golshan A R, Sheikh S I 2007 Annual Meeting of Institute of Navigation Cambrige, MA, USA, April 23-25, 2007 p413

    [18]

    Shi G, Lin J, Chen X Y, Qi F, Liu D H, Zhang L 2008 IEEE Trans. Sig. Proc. 55 379

    [19]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Sig. Proc. 53 4655

    [20]

    RXTE https://heasarc nasa gov/docs/archive html [2017-5-24]

  • [1]

    Hanson J E 1996 Ph. D. Dissertation (Stanford: Stanford University)

    [2]

    Sheikh S I 2005 Ph. D. Dissertation (Maryland: University of Maryland)

    [3]

    Liu J, Wu J, Xiong L, Fang J C, Liu G 2017 Chin. J. Electron 6 1325

    [4]

    Taylor J H 1992 Philos. T. R. Soc. A 341 117

    [5]

    Tran N D, Renaux A, Boyer R, Marcos S 2014 IEEE Trans. Aeros. Elec. Sys. 50 786

    [6]

    Kang Z W, He X, Liu J 2016 Optik 127 5050

    [7]

    Zhang H, Xu L P, Xie Q, Luo N 2011 Acta Phys. Sin. 60 049701 (in Chinese) [张华, 许录平, 谢强, 罗楠 2011 60 049701]

    [8]

    Fang H Y, Liu B, Li X P, Sun H F, Xue M F, Shen L R, Zhu J P 2016 Acta Phys. Sin. 65 119701 (in Chinese) [方海燕, 刘兵, 李小平, 孙海峰, 薛梦凡, 沈利荣, 朱金鹏 2016 65 119701]

    [9]

    Liu J, Fang J C, Wu J, Kang Z W, Ning X L 2014 IET Radar Sonar Navig 8 1154

    [10]

    Emadzadeh A A, Speyer J L 2011 IEEE Trans. Aeros. Elec. Sys. 47 2317

    [11]

    Emadzadeh A A, Speyer J L 2010 IEEE Trans. Sig. Proc. 58 4484

    [12]

    Li J X, Ke X Z 2010 Acta Astronom. Sin. 51 263 (in Chinese) [李建勋, 柯熙政 2010 天文学报 51 263]

    [13]

    Do T T, Gan L, Nguyen N H, Tran T D 2012 IEEE Trans. Sig. Proc. 60 139

    [14]

    Su Z, Xu L P, Gan W 2011 Sci. Sin.: Phys. Mech. Astron. 41 681 (in Chinese) [苏哲, 许录平, 甘伟 2011 中国科学: 物理学 力学 天文学 41 681]

    [15]

    Li S L, Liu K, Xiao L L 2014 Optik 125 1875

    [16]

    Shen L R, Li X P, Sun H F, Fang H Y, Xue M F 2016 Optik 127 4379

    [17]

    Golshan A R, Sheikh S I 2007 Annual Meeting of Institute of Navigation Cambrige, MA, USA, April 23-25, 2007 p413

    [18]

    Shi G, Lin J, Chen X Y, Qi F, Liu D H, Zhang L 2008 IEEE Trans. Sig. Proc. 55 379

    [19]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Sig. Proc. 53 4655

    [20]

    RXTE https://heasarc nasa gov/docs/archive html [2017-5-24]

  • [1] 陈纪辉, 王峰, 理玉龙, 张兴, 姚科, 关赞洋, 刘祥明. 针对微尺寸X射线源的非相干全息层析成像.  , 2023, 72(19): 195203. doi: 10.7498/aps.72.20230920
    [2] 曹海燕, 叶震宇. 基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计.  , 2022, 71(5): 050101. doi: 10.7498/aps.71.20211504
    [3] 曹海燕, 叶震宇. 基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计.  , 2021, (): . doi: 10.7498/aps.70.20211504
    [4] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法.  , 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [5] 周庆勇, 魏子卿, 姜坤, 邓楼楼, 刘思伟, 姬剑锋, 任红飞, 王奕迪, 马高峰. 一种聚焦型X射线探测器在轨性能标定方法.  , 2018, 67(5): 050701. doi: 10.7498/aps.67.20172352
    [6] 冷雪冬, 王大鸣, 巴斌, 王建辉. 基于渐进添边的准循环压缩感知时延估计算法.  , 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [7] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法.  , 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [8] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像.  , 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [9] 冷雪冬, 巴斌, 逯志宇, 王大鸣. 基于回溯筛选的稀疏重构时延估计算法.  , 2016, 65(21): 210701. doi: 10.7498/aps.65.210701
    [10] 李广明, 吕善翔. 混沌信号的压缩感知去噪.  , 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [11] 张新鹏, 胡茑庆, 程哲, 钟华. 基于压缩感知的振动数据修复方法.  , 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [12] 王哲, 王秉中. 压缩感知理论在矩量法中的应用.  , 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [13] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像.  , 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [14] 李晶, 赵拥军, 李冬海. 基于马尔科夫链蒙特卡罗的时延估计算法.  , 2014, 63(13): 130701. doi: 10.7498/aps.63.130701
    [15] 梁国龙, 马巍, 范展, 王逸林. 矢量声纳高速运动目标稳健高分辨方位估计.  , 2013, 62(14): 144302. doi: 10.7498/aps.62.144302
    [16] 马原, 吕群波, 刘扬阳, 钱路路, 裴琳琳. 基于主成分变换的图像稀疏度估计方法.  , 2013, 62(20): 204202. doi: 10.7498/aps.62.204202
    [17] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究.  , 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [18] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法.  , 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [19] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究.  , 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [20] 苏哲, 许录平, 王婷. X射线脉冲星导航半物理仿真实验系统研究.  , 2011, 60(11): 119701. doi: 10.7498/aps.60.119701
计量
  • 文章访问数:  6783
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-21
  • 修回日期:  2018-02-05
  • 刊出日期:  2018-05-05

/

返回文章
返回
Baidu
map