搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续变量纠缠态光场在光纤中传输特性的实验研究

万振菊 冯晋霞 成健 张宽收

引用本文:
Citation:

连续变量纠缠态光场在光纤中传输特性的实验研究

万振菊, 冯晋霞, 成健, 张宽收

Experimental investigation of transmission characteristics of continuous variable entangled state over optical fibers

Wan Zhen-Ju, Feng Jin-Xia, Cheng Jian, Zhang Kuan-Shou
PDF
导出引用
  • 连续变量纠缠态由于其确定性产生、高效率的特点而被广泛应用于连续变量量子信息处理.在量子信息处理过程中纠缠态与量子信道发生相互作用而退相干,这是限制长距离量子信息发展的重要因素之一.光纤信道作为理想的量子信道,是目前连续变量量子信息研究关注的热点.本文利用Ⅱ类匹配的楔角极化磷酸氧钛钾晶体构成了三共振的非简并光学参量放大器,获得了8.3 dB的光通信波段1.5 m连续变量纠缠态光场.将产生的纠缠态光场注入单模光纤,其量子特性在传输距离达50 km后仍得到保持,纠缠度为0.21 dB.该研究可为基于光纤的长距离连续变量量子信息研究提供有效的依据.
    Continuous variable (CV) quantum entanglement is an essential resource for quantum computation and communication protocols. The use of CV quantum entanglement at a telecommunication wavelength of 1.5m in combination with existing fiber telecommunication networks offers the possibility to implement long-distance quantum communication protocols like quantum key distribution (QKD) and applications such as quantum repeaters, quantum teleportation in the future. In spite of the fact that the optical power attenuation of light in a standard telecommunication fiber is lowest at a wavelength of 1.5m, the entangled states will interact with fiber channels and the disentanglement will occur. It is one of the important factors restricting the development of long distance quantum information. In this paper, CV entangled state at 1.5m telecommunication band is obtained by using a type-II periodically poled KTP (PPKTP) crystal inside a nondegenerate optical parametric amplifier (NOPA). A wedged PPKTP is used for implementing frequency-down-conversion of the pump field to generate the optically entangled state and achieving the dispersion compensation between the pump and the subharmonic waves. By controlling the temperature and the length of the PPKTP crystal, a triply resonant optical parametric oscillator with a threshold of 80 mW is realized. Einstein-PodolskyRosen (EPR)-entangled beams with quantum correlation of 8.3 dB for both the amplitude and phase quadratures are experimentally generated by using a single NOPA at a pump power of 40 mW and an injected signal power of 10 mW when the relative phase between the pump and injected signal is locked to . The generated entangled state is coupled into a single-mode optical fiber, and the transmission characteristics of the generated EPR entangled beams through standard single-mode fibers are investigated experimentally and theoretically. A fiber polarization controller is used to compensate for the polarization state variation induced by random fluctuations of birefringence of the single mode fiber when the light propagates along the fiber, and to keep the polarization of light linear at the fiber output. A 0.21 dB quantum entanglement could still be observed for the EPR-entangled beams transmitted through a 50-km-long single-mode fiber. The theoretical prediction considering the excess noise in fiber channel is in good agreement with the experimental result. The generated CV quantum entanglement is highly suitable for the required experiments, such as CV measurement-device-independence QKD based on standard fibers, owing to the fact that the tolerance of the excess noise in the quantum channel can be enhanced significantly with respect to a coherent state if EPR-entangled beams are used.
      通信作者: 冯晋霞, fengjx@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0301401)和山西省1331工程重点学科建设计划(批准号:1331KS)资助的课题.
      Corresponding author: Feng Jin-Xia, fengjx@sxu.edu.cn
    • Funds: Project supported by the National Key Research and Develop Program of China (Grant No. 2016YFA0301401) and the Fund for Shanxi 1331 Project Key Subjects Construction, China (Grant No. 1331KS).
    [1]

    Briegel H J, Dur W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [2]

    Braunstein S L, Kimble H J 1998 Phys. Rev. Lett. 80 869

    [3]

    Li X Y, Pan Q, Jing J T, Zhang J, Xie C D, Peng K C 2002 Phys. Rev. Lett. 88 047904

    [4]

    Su X L, Wang W Z, Wang Y, Jia X J, Xie C D, Peng K C 2009 Europhys. Lett. 87 20005

    [5]

    Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330

    [6]

    Madsen L S, Usenko V C, Lassen M, Filip R 2012 Nat. Commun. 3 1083

    [7]

    Duan L M, Guo G C 1997 Quantum Semiclassic. Opt. 9 953

    [8]

    Shelby R M, Levenson M D, Bayer P W 1985 Phys. Rev. Lett. 54 939

    [9]

    Corney J F, Drummond P D, Heersink J, Josse V, Leuchs G, Andersen U L 2006 Phys. Rev. Lett. 97 023606

    [10]

    Deng C Y, Hou S L, Lei J L, Wang D B, Li X X 2016 Acta Phys. Sin. 65 240702 (in Chinese)[邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓 2016 65 240702]

    [11]

    Marcikic I, Riedmatten H, Tittel W, Zbinden H, Legr M, Gisin N 2004 Phys. Rev. Lett. 93 180502

    [12]

    Rosenberg D, Harrington J W, Rice P R, Hiskett P A, Peterson C G, Hughes R J, Lita A E, Nam S W, Nordholt J E 2007 Phys. Rev. Lett. 98 010503

    [13]

    Schmitt-Manderbach T, Weier H, Furst M, Ursin R, Tiefenbacher F, Scheidl T, Perdigues J, Sodnik Z, Kursiefer C, Rarity J G, Zeilinger A, Weinfurter H 2007 Phys. Rev. Lett. 98 010504

    [14]

    Valivarthi R, Puigibert M I G, Zhou Q, Aguilar G H, Verma V B, Marsili F, Shaw M D, Nam S W, Oblak D, Tittel W 2016 Nat. Photon. 10 676

    [15]

    Sun Q C, Mao Y L, Jiang Y F, Zhao Q, Chen S J, Zhang W, Zhang W J, Jiang X, Chen T Y, You L X, Li L, Huang Y D, Chen X F, Wang Z, Ma X, Zhang Q, Pan J W 2017 Phys. Rev. A 95 032306

    [16]

    Biswas A, Lidar D A 2006 Phys. Rev. A 74 062303

    [17]

    Maniscalco S, Olivares S, Paris M G A 2007 Phys. Rev. A 75 062119

    [18]

    Barbosa F A S, Faria A J, Coelho A S, Cassemiro K N, Villar A S, Nussenzveig P, Martinelli M 2011 Phys. Rev. A 84 052330

    [19]

    Coelho A S, Barbosa F A S, Cassemiro K N, Villar A S, Martinelli M, Nussenzveig P 2009 Science 326 823

    [20]

    Barbosa F A S, Coelho A S, Faria A J, Cassemiro K N, Villar A S, Nussenzveig P, Martinelli M 2010 Nature Photon. 4 858

    [21]

    Deng X W, Tian C X, Su X L, Xie C D 2017 Sci. Rep. 7 44475

    [22]

    Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nature Photon. 7 378

    [23]

    Black E D 2001 Am. J. Phys. 69 79

    [24]

    Sun Z N, Feng J X, Wan Z J, Zhang K S 2016 Acta Phys. Sin. 65 044203 (in Chinese)[孙志妮, 冯晋霞, 万振菊, 张宽收 2016 65 044203]

    [25]

    Zhang J, Peng K C 2000 Phys. Rev. A 62 064302

    [26]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722

    [27]

    Deng X W, Hao S H, Tian C X, Su X L, Xie C D, Peng K C 2016 Appl. Phys. Lett. 108 081105

  • [1]

    Briegel H J, Dur W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [2]

    Braunstein S L, Kimble H J 1998 Phys. Rev. Lett. 80 869

    [3]

    Li X Y, Pan Q, Jing J T, Zhang J, Xie C D, Peng K C 2002 Phys. Rev. Lett. 88 047904

    [4]

    Su X L, Wang W Z, Wang Y, Jia X J, Xie C D, Peng K C 2009 Europhys. Lett. 87 20005

    [5]

    Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330

    [6]

    Madsen L S, Usenko V C, Lassen M, Filip R 2012 Nat. Commun. 3 1083

    [7]

    Duan L M, Guo G C 1997 Quantum Semiclassic. Opt. 9 953

    [8]

    Shelby R M, Levenson M D, Bayer P W 1985 Phys. Rev. Lett. 54 939

    [9]

    Corney J F, Drummond P D, Heersink J, Josse V, Leuchs G, Andersen U L 2006 Phys. Rev. Lett. 97 023606

    [10]

    Deng C Y, Hou S L, Lei J L, Wang D B, Li X X 2016 Acta Phys. Sin. 65 240702 (in Chinese)[邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓 2016 65 240702]

    [11]

    Marcikic I, Riedmatten H, Tittel W, Zbinden H, Legr M, Gisin N 2004 Phys. Rev. Lett. 93 180502

    [12]

    Rosenberg D, Harrington J W, Rice P R, Hiskett P A, Peterson C G, Hughes R J, Lita A E, Nam S W, Nordholt J E 2007 Phys. Rev. Lett. 98 010503

    [13]

    Schmitt-Manderbach T, Weier H, Furst M, Ursin R, Tiefenbacher F, Scheidl T, Perdigues J, Sodnik Z, Kursiefer C, Rarity J G, Zeilinger A, Weinfurter H 2007 Phys. Rev. Lett. 98 010504

    [14]

    Valivarthi R, Puigibert M I G, Zhou Q, Aguilar G H, Verma V B, Marsili F, Shaw M D, Nam S W, Oblak D, Tittel W 2016 Nat. Photon. 10 676

    [15]

    Sun Q C, Mao Y L, Jiang Y F, Zhao Q, Chen S J, Zhang W, Zhang W J, Jiang X, Chen T Y, You L X, Li L, Huang Y D, Chen X F, Wang Z, Ma X, Zhang Q, Pan J W 2017 Phys. Rev. A 95 032306

    [16]

    Biswas A, Lidar D A 2006 Phys. Rev. A 74 062303

    [17]

    Maniscalco S, Olivares S, Paris M G A 2007 Phys. Rev. A 75 062119

    [18]

    Barbosa F A S, Faria A J, Coelho A S, Cassemiro K N, Villar A S, Nussenzveig P, Martinelli M 2011 Phys. Rev. A 84 052330

    [19]

    Coelho A S, Barbosa F A S, Cassemiro K N, Villar A S, Martinelli M, Nussenzveig P 2009 Science 326 823

    [20]

    Barbosa F A S, Coelho A S, Faria A J, Cassemiro K N, Villar A S, Nussenzveig P, Martinelli M 2010 Nature Photon. 4 858

    [21]

    Deng X W, Tian C X, Su X L, Xie C D 2017 Sci. Rep. 7 44475

    [22]

    Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nature Photon. 7 378

    [23]

    Black E D 2001 Am. J. Phys. 69 79

    [24]

    Sun Z N, Feng J X, Wan Z J, Zhang K S 2016 Acta Phys. Sin. 65 044203 (in Chinese)[孙志妮, 冯晋霞, 万振菊, 张宽收 2016 65 044203]

    [25]

    Zhang J, Peng K C 2000 Phys. Rev. A 62 064302

    [26]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722

    [27]

    Deng X W, Hao S H, Tian C X, Su X L, Xie C D, Peng K C 2016 Appl. Phys. Lett. 108 081105

  • [1] 吴炜, 赵豪, 冯晋霞, 李俊, 李渊骥, 张宽收. 相敏操控对制备低频双模正交压缩真空态光场的影响.  , 2024, 73(5): 054202. doi: 10.7498/aps.73.20231765
    [2] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制.  , 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [3] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制.  , 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [4] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制.  , 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [5] 赵豪, 冯晋霞, 孙婧可, 李渊骥, 张宽收. 连续变量Einstein-Podolsky-Rosen纠缠态光场在光纤信道中分发时纠缠的鲁棒性.  , 2022, 71(9): 094202. doi: 10.7498/aps.71.20212380
    [6] 刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞. 基于非简并光学参量放大器产生光学频率梳纠缠态.  , 2020, 69(12): 124203. doi: 10.7498/aps.69.20200107
    [7] 李娟, 李佳明, 蔡春晓, 孙恒信, 刘奎, 郜江瑞. 优化抽运空间分布实现连续变量超纠缠的纠缠增强.  , 2019, 68(3): 034204. doi: 10.7498/aps.68.20181625
    [8] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 m量子纠缠态光场的实验制备.  , 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [9] 孙志妮, 冯晋霞, 万振菊, 张宽收. 1.5m光通信波段明亮压缩态光场的产生及其Wigner函数的重构.  , 2016, 65(4): 044203. doi: 10.7498/aps.65.044203
    [10] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性.  , 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [11] 王菊霞. 二能级原子与多模光场简并多光子共振相互作用系统中量子保真度的演化特性.  , 2014, 63(18): 184203. doi: 10.7498/aps.63.184203
    [12] 卢道明, 邱昌东. 弱相干场原子-腔-光纤系统中的量子失协.  , 2014, 63(11): 110303. doi: 10.7498/aps.63.110303
    [13] 严晓波, 杨柳, 田雪冬, 刘一谋, 张岩. 参量放大器腔中光力诱导透明与本征模劈裂性质.  , 2014, 63(20): 204201. doi: 10.7498/aps.63.204201
    [14] 周媛媛, 张合庆, 周学军, 田培根. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析.  , 2013, 62(20): 200302. doi: 10.7498/aps.62.200302
    [15] 卢道明. 三参数双模压缩粒子数态的量子特性.  , 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [16] 周媛媛, 周学军. 基于弱相干态光源的非正交编码被动诱骗态量子密钥分配.  , 2011, 60(10): 100301. doi: 10.7498/aps.60.100301
    [17] 赵超樱, 谭维翰. 色散效应对光学参量放大器量子起伏特性的影响.  , 2010, 59(4): 2498-2504. doi: 10.7498/aps.59.2498
    [18] 张英杰, 夏云杰, 任廷琦, 杜秀梅, 刘玉玲. 反Jaynes-Cummings模型下纠缠相干光场量子特性的研究.  , 2009, 58(2): 722-728. doi: 10.7498/aps.58.722
    [19] 江金环, 王永龙, 李子平. 稳态光折变空间孤子传输的量子理论.  , 2004, 53(12): 4070-4074. doi: 10.7498/aps.53.4070
    [20] 王丹翎, 龚旗煌, 汪凯戈, 杨国健. 光学简并参量振荡中的量子非破坏性测量.  , 2000, 49(8): 1484-1489. doi: 10.7498/aps.49.1484
计量
  • 文章访问数:  6373
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-04
  • 修回日期:  2017-09-21
  • 刊出日期:  2019-01-20

/

返回文章
返回
Baidu
map