-
连续变量纠缠态由于其确定性产生、高效率的特点而被广泛应用于连续变量量子信息处理.在量子信息处理过程中纠缠态与量子信道发生相互作用而退相干,这是限制长距离量子信息发展的重要因素之一.光纤信道作为理想的量子信道,是目前连续变量量子信息研究关注的热点.本文利用Ⅱ类匹配的楔角极化磷酸氧钛钾晶体构成了三共振的非简并光学参量放大器,获得了8.3 dB的光通信波段1.5 m连续变量纠缠态光场.将产生的纠缠态光场注入单模光纤,其量子特性在传输距离达50 km后仍得到保持,纠缠度为0.21 dB.该研究可为基于光纤的长距离连续变量量子信息研究提供有效的依据.Continuous variable (CV) quantum entanglement is an essential resource for quantum computation and communication protocols. The use of CV quantum entanglement at a telecommunication wavelength of 1.5m in combination with existing fiber telecommunication networks offers the possibility to implement long-distance quantum communication protocols like quantum key distribution (QKD) and applications such as quantum repeaters, quantum teleportation in the future. In spite of the fact that the optical power attenuation of light in a standard telecommunication fiber is lowest at a wavelength of 1.5m, the entangled states will interact with fiber channels and the disentanglement will occur. It is one of the important factors restricting the development of long distance quantum information. In this paper, CV entangled state at 1.5m telecommunication band is obtained by using a type-II periodically poled KTP (PPKTP) crystal inside a nondegenerate optical parametric amplifier (NOPA). A wedged PPKTP is used for implementing frequency-down-conversion of the pump field to generate the optically entangled state and achieving the dispersion compensation between the pump and the subharmonic waves. By controlling the temperature and the length of the PPKTP crystal, a triply resonant optical parametric oscillator with a threshold of 80 mW is realized. Einstein-PodolskyRosen (EPR)-entangled beams with quantum correlation of 8.3 dB for both the amplitude and phase quadratures are experimentally generated by using a single NOPA at a pump power of 40 mW and an injected signal power of 10 mW when the relative phase between the pump and injected signal is locked to . The generated entangled state is coupled into a single-mode optical fiber, and the transmission characteristics of the generated EPR entangled beams through standard single-mode fibers are investigated experimentally and theoretically. A fiber polarization controller is used to compensate for the polarization state variation induced by random fluctuations of birefringence of the single mode fiber when the light propagates along the fiber, and to keep the polarization of light linear at the fiber output. A 0.21 dB quantum entanglement could still be observed for the EPR-entangled beams transmitted through a 50-km-long single-mode fiber. The theoretical prediction considering the excess noise in fiber channel is in good agreement with the experimental result. The generated CV quantum entanglement is highly suitable for the required experiments, such as CV measurement-device-independence QKD based on standard fibers, owing to the fact that the tolerance of the excess noise in the quantum channel can be enhanced significantly with respect to a coherent state if EPR-entangled beams are used.
-
Keywords:
- quantum optics /
- continuous variable entangled light /
- optical parametric amplifier /
- fiber channel
[1] Briegel H J, Dur W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932
[2] Braunstein S L, Kimble H J 1998 Phys. Rev. Lett. 80 869
[3] Li X Y, Pan Q, Jing J T, Zhang J, Xie C D, Peng K C 2002 Phys. Rev. Lett. 88 047904
[4] Su X L, Wang W Z, Wang Y, Jia X J, Xie C D, Peng K C 2009 Europhys. Lett. 87 20005
[5] Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330
[6] Madsen L S, Usenko V C, Lassen M, Filip R 2012 Nat. Commun. 3 1083
[7] Duan L M, Guo G C 1997 Quantum Semiclassic. Opt. 9 953
[8] Shelby R M, Levenson M D, Bayer P W 1985 Phys. Rev. Lett. 54 939
[9] Corney J F, Drummond P D, Heersink J, Josse V, Leuchs G, Andersen U L 2006 Phys. Rev. Lett. 97 023606
[10] Deng C Y, Hou S L, Lei J L, Wang D B, Li X X 2016 Acta Phys. Sin. 65 240702 (in Chinese)[邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓 2016 65 240702]
[11] Marcikic I, Riedmatten H, Tittel W, Zbinden H, Legr M, Gisin N 2004 Phys. Rev. Lett. 93 180502
[12] Rosenberg D, Harrington J W, Rice P R, Hiskett P A, Peterson C G, Hughes R J, Lita A E, Nam S W, Nordholt J E 2007 Phys. Rev. Lett. 98 010503
[13] Schmitt-Manderbach T, Weier H, Furst M, Ursin R, Tiefenbacher F, Scheidl T, Perdigues J, Sodnik Z, Kursiefer C, Rarity J G, Zeilinger A, Weinfurter H 2007 Phys. Rev. Lett. 98 010504
[14] Valivarthi R, Puigibert M I G, Zhou Q, Aguilar G H, Verma V B, Marsili F, Shaw M D, Nam S W, Oblak D, Tittel W 2016 Nat. Photon. 10 676
[15] Sun Q C, Mao Y L, Jiang Y F, Zhao Q, Chen S J, Zhang W, Zhang W J, Jiang X, Chen T Y, You L X, Li L, Huang Y D, Chen X F, Wang Z, Ma X, Zhang Q, Pan J W 2017 Phys. Rev. A 95 032306
[16] Biswas A, Lidar D A 2006 Phys. Rev. A 74 062303
[17] Maniscalco S, Olivares S, Paris M G A 2007 Phys. Rev. A 75 062119
[18] Barbosa F A S, Faria A J, Coelho A S, Cassemiro K N, Villar A S, Nussenzveig P, Martinelli M 2011 Phys. Rev. A 84 052330
[19] Coelho A S, Barbosa F A S, Cassemiro K N, Villar A S, Martinelli M, Nussenzveig P 2009 Science 326 823
[20] Barbosa F A S, Coelho A S, Faria A J, Cassemiro K N, Villar A S, Nussenzveig P, Martinelli M 2010 Nature Photon. 4 858
[21] Deng X W, Tian C X, Su X L, Xie C D 2017 Sci. Rep. 7 44475
[22] Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nature Photon. 7 378
[23] Black E D 2001 Am. J. Phys. 69 79
[24] Sun Z N, Feng J X, Wan Z J, Zhang K S 2016 Acta Phys. Sin. 65 044203 (in Chinese)[孙志妮, 冯晋霞, 万振菊, 张宽收 2016 65 044203]
[25] Zhang J, Peng K C 2000 Phys. Rev. A 62 064302
[26] Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722
[27] Deng X W, Hao S H, Tian C X, Su X L, Xie C D, Peng K C 2016 Appl. Phys. Lett. 108 081105
-
[1] Briegel H J, Dur W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932
[2] Braunstein S L, Kimble H J 1998 Phys. Rev. Lett. 80 869
[3] Li X Y, Pan Q, Jing J T, Zhang J, Xie C D, Peng K C 2002 Phys. Rev. Lett. 88 047904
[4] Su X L, Wang W Z, Wang Y, Jia X J, Xie C D, Peng K C 2009 Europhys. Lett. 87 20005
[5] Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330
[6] Madsen L S, Usenko V C, Lassen M, Filip R 2012 Nat. Commun. 3 1083
[7] Duan L M, Guo G C 1997 Quantum Semiclassic. Opt. 9 953
[8] Shelby R M, Levenson M D, Bayer P W 1985 Phys. Rev. Lett. 54 939
[9] Corney J F, Drummond P D, Heersink J, Josse V, Leuchs G, Andersen U L 2006 Phys. Rev. Lett. 97 023606
[10] Deng C Y, Hou S L, Lei J L, Wang D B, Li X X 2016 Acta Phys. Sin. 65 240702 (in Chinese)[邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓 2016 65 240702]
[11] Marcikic I, Riedmatten H, Tittel W, Zbinden H, Legr M, Gisin N 2004 Phys. Rev. Lett. 93 180502
[12] Rosenberg D, Harrington J W, Rice P R, Hiskett P A, Peterson C G, Hughes R J, Lita A E, Nam S W, Nordholt J E 2007 Phys. Rev. Lett. 98 010503
[13] Schmitt-Manderbach T, Weier H, Furst M, Ursin R, Tiefenbacher F, Scheidl T, Perdigues J, Sodnik Z, Kursiefer C, Rarity J G, Zeilinger A, Weinfurter H 2007 Phys. Rev. Lett. 98 010504
[14] Valivarthi R, Puigibert M I G, Zhou Q, Aguilar G H, Verma V B, Marsili F, Shaw M D, Nam S W, Oblak D, Tittel W 2016 Nat. Photon. 10 676
[15] Sun Q C, Mao Y L, Jiang Y F, Zhao Q, Chen S J, Zhang W, Zhang W J, Jiang X, Chen T Y, You L X, Li L, Huang Y D, Chen X F, Wang Z, Ma X, Zhang Q, Pan J W 2017 Phys. Rev. A 95 032306
[16] Biswas A, Lidar D A 2006 Phys. Rev. A 74 062303
[17] Maniscalco S, Olivares S, Paris M G A 2007 Phys. Rev. A 75 062119
[18] Barbosa F A S, Faria A J, Coelho A S, Cassemiro K N, Villar A S, Nussenzveig P, Martinelli M 2011 Phys. Rev. A 84 052330
[19] Coelho A S, Barbosa F A S, Cassemiro K N, Villar A S, Martinelli M, Nussenzveig P 2009 Science 326 823
[20] Barbosa F A S, Coelho A S, Faria A J, Cassemiro K N, Villar A S, Nussenzveig P, Martinelli M 2010 Nature Photon. 4 858
[21] Deng X W, Tian C X, Su X L, Xie C D 2017 Sci. Rep. 7 44475
[22] Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nature Photon. 7 378
[23] Black E D 2001 Am. J. Phys. 69 79
[24] Sun Z N, Feng J X, Wan Z J, Zhang K S 2016 Acta Phys. Sin. 65 044203 (in Chinese)[孙志妮, 冯晋霞, 万振菊, 张宽收 2016 65 044203]
[25] Zhang J, Peng K C 2000 Phys. Rev. A 62 064302
[26] Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722
[27] Deng X W, Hao S H, Tian C X, Su X L, Xie C D, Peng K C 2016 Appl. Phys. Lett. 108 081105
计量
- 文章访问数: 6373
- PDF下载量: 169
- 被引次数: 0