搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯低温热膨胀和声子弛豫时间随温度的变化规律

任晓霞 申凤娟 林歆悠 郑瑞伦

引用本文:
Citation:

石墨烯低温热膨胀和声子弛豫时间随温度的变化规律

任晓霞, 申凤娟, 林歆悠, 郑瑞伦

Variation of thermal expansion at low temperature and phonon relaxation time in graphene with temperature

Ren Xiao-Xia, Shen Feng-Juan, Lin Xin-You, Zheng Rui-Lun
PDF
导出引用
  • 考虑到原子非简谐振动和电子-声子相互作用,用固体物理理论和方法研究了石墨烯格林艾森参量和低温热膨胀系数以及声子弛豫时间随温度的变化规律,探讨了原子非简谐振动项对它们的影响.结果表明:1)在低于室温的温度范围内,石墨烯的热膨胀系数为负值,随着温度的升高,其热膨胀系数的绝对值单调增加,室温热膨胀系数为-3.64×10-6K-1;2)简谐近似下的格林艾森参量为零.考虑到非简谐项后,格林艾森参量在1.40–1.42之间并随温度升高而缓慢增大,几乎成线性关系,第二非简谐项对格林艾森参量的影响小于第一非简谐项;3)石墨烯声子弛豫时间随着温度的升高而减小,其中,温度很低(TT>300 K)时,声子弛豫时间与温度几乎成反比关系.
    Considering the anharmonic vibrations and the interactions between electron and phonon of atoms, in this article we study the temperature dependence of Grneisen parameter, thermal expansion coefficient at low temperature and phonon relaxation time by using the theory and method of solid state physics. The influences of the anharmonic vibration of the atom on the above parameters are further discussed. The obtained results are as follows. 1) The thermal expansion coefficient of graphene is a negative value when the temperature drops below room temperature. The absolute value of the thermal expansion coefficient of graphene increases monotonically with the increase of temperature. The thermal expansion coefficient of graphene is-3.64×10-6 K-1 at room temperature. 2) The value of Grneisen parameter is zero in the harmonic approximation. If the anharmonic vibration is considered, the Grneisen parameter will increase slowly with the increase of temperature. Its value is between 1.40 and1.42 and the change is almost linear. And we find that the influence of the second anharmonic term is less than that of the first anharmonic term on Grneisen parameter. 3) The phonon relaxation time decreases with the increase of temperature. The rate changes rapidly at low temperature (T<10 K), then it changes very slowly. The phonon relaxation time is almost inversely proportional to temperature when the temperature is higher than 300 K.
      通信作者: 郑瑞伦, zhengrui@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51505086)、重庆市教委科技项目(批准号:KJ1601118,KJ1601111)和重庆市基础与前沿研究项目(批准号:cstc2015jcyjA40054)资助的课题.}\csamefor{共同第一作者
      Corresponding author: Zheng Rui-Lun, zhengrui@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51505086), The Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant Nos. KJ1601118, KJ1601111), and the Natural Science Foundation Project of Chongqing (CSTC), China (Grant No. Cstc2015jcyjA40054).
    [1]

    Novoselov K S, Ceim A K, Morozov S V, et al. 2004 Science 306 666

    [2]

    Katsnelson M I 2007 Mater. Today 10 20

    [3]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Eudenberg G, Hone J, Stormer H L 2008 Sol. Sta. Com. 146 351

    [4]

    Tian W, Yuan P F, Yu Z L, Tao B B, Hou S Y, Zhang Z H 2015 Acta Phys. Sin. 64 046102 (in Chinese) [田文, 袁鹏飞, 禹卓良, 陶斌斌, 侯森耀, 张振华 2015 64 046102]

    [5]

    Yu D S 2013 Phys. Stat. Sol. 55 813 (in Russian)

    [6]

    Mounet N, Marzari N 2005 Phys. Rev. B 71 205214

    [7]

    Zakharchenko K V, Katsnelson M I, Fasolino A 2009 Phys. Rev. Lett. 102 046808

    [8]

    Jiang J W, Wang J S, Li B 2009 Phys. Rev. B 80 205429

    [9]

    Pozzo M, Alfe D, Lacovig P, Hofmann P, Lizzit S, Baraldi A 2011 Phys. Rev. Lett. 106 135501

    [10]

    Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau N 2009 Nat. Nanotechol. 4 562

    [11]

    Yu D S (in Russian)

    [12]

    Cheng Z F, Zheng R L 2016 Chin. Phys. Lett. 33 046501

    [13]

    Cheng Z F, Zheng R L 2016 Acta Phys. Sin. 65 104701 (in Chinese) [程正富, 郑瑞伦 2016 65 104701]

    [14]

    Yoon D, Son Y W, Cheong H 2011 Nano Leet. 11 3227

    [15]

    Zha X H, Zhang R Q, Lin Z 2014 J. Chem. Phys. 141 064705

    [16]

    Ge X J, Xao K L, Lil J T 2016 Phys. Rev. B 94 165433

    [17]

    Kang K, Abdula D, Cahill D G, Shim M 2010 Phys. Rev. B 81 165405

    [18]

    Lindsay L, Broido D A, Mingo N 2011 Phys. Rev. B 83 235428

    [19]

    Bonini N, Lazzeri M, Marzari N, Mauri F 2007 Phys. Rev. Lett. 99 176802

    [20]

    Ye Z Q, Cao B Y, Guo Z Y 2014 Acta Phys. Sin. 63 154704 (in Chinese) [叶振强, 曹炳阳, 过增元 2014 63 154704]

    [21]

    Davydov S Yu 2012 Phys. Solid Stat. 54 875

    [22]

    Jiang J W, Wang B S, Wang J S, Park S A 2015 J.Phys.: Condens. Matter 27 083011

    [23]

    Zheng R L, Hu X Q 1996 Solid Theory and Application (Chongqing: Southwest Normal University Press)pp316–325 (in Chinese) [郑瑞伦, 胡先权 1996 固体理论及其应用 (重庆: 西南师范大学出版社) 第 316—325 页]

    [24]

    yu D S, Jihonov S K 1996 Phys. Semicond. Technol. 30 968

    [25]

    Ren X X, Kang W, Cheng Z F, Zheng R L 2016 Chin.Phys. Lett. 33 126501

    [26]

    Nika D L, Pokatilov E P, Askerov A S, Balandin A A 2009 Phys. Rev. B 79 155413

  • [1]

    Novoselov K S, Ceim A K, Morozov S V, et al. 2004 Science 306 666

    [2]

    Katsnelson M I 2007 Mater. Today 10 20

    [3]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Eudenberg G, Hone J, Stormer H L 2008 Sol. Sta. Com. 146 351

    [4]

    Tian W, Yuan P F, Yu Z L, Tao B B, Hou S Y, Zhang Z H 2015 Acta Phys. Sin. 64 046102 (in Chinese) [田文, 袁鹏飞, 禹卓良, 陶斌斌, 侯森耀, 张振华 2015 64 046102]

    [5]

    Yu D S 2013 Phys. Stat. Sol. 55 813 (in Russian)

    [6]

    Mounet N, Marzari N 2005 Phys. Rev. B 71 205214

    [7]

    Zakharchenko K V, Katsnelson M I, Fasolino A 2009 Phys. Rev. Lett. 102 046808

    [8]

    Jiang J W, Wang J S, Li B 2009 Phys. Rev. B 80 205429

    [9]

    Pozzo M, Alfe D, Lacovig P, Hofmann P, Lizzit S, Baraldi A 2011 Phys. Rev. Lett. 106 135501

    [10]

    Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau N 2009 Nat. Nanotechol. 4 562

    [11]

    Yu D S (in Russian)

    [12]

    Cheng Z F, Zheng R L 2016 Chin. Phys. Lett. 33 046501

    [13]

    Cheng Z F, Zheng R L 2016 Acta Phys. Sin. 65 104701 (in Chinese) [程正富, 郑瑞伦 2016 65 104701]

    [14]

    Yoon D, Son Y W, Cheong H 2011 Nano Leet. 11 3227

    [15]

    Zha X H, Zhang R Q, Lin Z 2014 J. Chem. Phys. 141 064705

    [16]

    Ge X J, Xao K L, Lil J T 2016 Phys. Rev. B 94 165433

    [17]

    Kang K, Abdula D, Cahill D G, Shim M 2010 Phys. Rev. B 81 165405

    [18]

    Lindsay L, Broido D A, Mingo N 2011 Phys. Rev. B 83 235428

    [19]

    Bonini N, Lazzeri M, Marzari N, Mauri F 2007 Phys. Rev. Lett. 99 176802

    [20]

    Ye Z Q, Cao B Y, Guo Z Y 2014 Acta Phys. Sin. 63 154704 (in Chinese) [叶振强, 曹炳阳, 过增元 2014 63 154704]

    [21]

    Davydov S Yu 2012 Phys. Solid Stat. 54 875

    [22]

    Jiang J W, Wang B S, Wang J S, Park S A 2015 J.Phys.: Condens. Matter 27 083011

    [23]

    Zheng R L, Hu X Q 1996 Solid Theory and Application (Chongqing: Southwest Normal University Press)pp316–325 (in Chinese) [郑瑞伦, 胡先权 1996 固体理论及其应用 (重庆: 西南师范大学出版社) 第 316—325 页]

    [24]

    yu D S, Jihonov S K 1996 Phys. Semicond. Technol. 30 968

    [25]

    Ren X X, Kang W, Cheng Z F, Zheng R L 2016 Chin.Phys. Lett. 33 126501

    [26]

    Nika D L, Pokatilov E P, Askerov A S, Balandin A A 2009 Phys. Rev. B 79 155413

  • [1] 沈艳丽, 史冰融, 吕浩, 张帅一, 王霞. 基于石墨烯的Au纳米颗粒增强染料随机激光.  , 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [2] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响.  , 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [3] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性.  , 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [4] 李亮亮, 孟凡伟, 邹鲲, 黄瑶, 彭倚天. 悬浮石墨烯摩擦特性.  , 2021, 70(8): 086801. doi: 10.7498/aps.70.20201796
    [5] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收.  , 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [6] 汪杨, 赵伶玲. 单原子Lennard-Jones体黏弹性弛豫时间.  , 2020, 69(12): 123101. doi: 10.7498/aps.69.20200138
    [7] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移.  , 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [8] 卢琪, 吕宏鸣, 伍晓明, 吴华强, 钱鹤. 石墨烯射频器件研究进展.  , 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [9] 秦志辉. 类石墨烯锗烯研究进展.  , 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [10] 张克声, 朱明, 唐文勇, 欧卫华, 蒋学勤. 可激发气体振动弛豫时间的两频点声测量重建算法.  , 2016, 65(13): 134302. doi: 10.7498/aps.65.134302
    [11] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质.  , 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [12] 卢晓波, 张广宇. 石墨烯莫尔超晶格.  , 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [13] 徐志成, 钟伟荣. C60轰击石墨烯的瞬间动力学.  , 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [14] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究.  , 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [15] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收.  , 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [16] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态.  , 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [17] 于海玲, 朱嘉琦, 曹文鑫, 韩杰才. 金属催化制备石墨烯的研究进展.  , 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [18] 贾雅琼, 王殊, 朱明, 张克声, 袁飞阁. 气体声弛豫过程中有效比热容与弛豫时间的分解对应关系.  , 2012, 61(9): 095101. doi: 10.7498/aps.61.095101
    [19] 王兵, 吴秀清. 双色噪声驱动光学双稳系统的弛豫时间研究.  , 2011, 60(7): 074214. doi: 10.7498/aps.60.074214
    [20] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟.  , 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
计量
  • 文章访问数:  10981
  • PDF下载量:  326
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-20
  • 修回日期:  2017-08-20
  • 刊出日期:  2017-11-05

/

返回文章
返回
Baidu
map