搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层石墨烯的化学气相沉积法制备及其光电器件

杨云畅 武斌 刘云圻

引用本文:
Citation:

双层石墨烯的化学气相沉积法制备及其光电器件

杨云畅, 武斌, 刘云圻

Synthesis of bilayer graphene via chemical vapor deposition and its optoelectronic devices

Yang Yun-Chang, Wu Bin, Liu Yun-Qi
PDF
导出引用
  • 石墨烯是一种具有优异性质,在光电及能源领域具有巨大应用前景的二维材料.尽管单层石墨烯具有超高的迁移率,但是它的能带结构具有狄拉克锥(K点),即价带和导带并未有明显分离,所以在半导体器件方面的应用受到一定的限制.由双层石墨烯搭建而成的双门器件,在施加外加电场的情况下,它的带隙可以打开,并在一定范围内可调,这种性质赋予了双层石墨烯在半导体器件应用方面的前景.然而机械或者液相剥离石墨烯,在层数和大小方面可控性较差.如何通过化学气相沉积法可控制备双层石墨烯是目前研究的核心问题之一.本文主要综述了如何通过化学气相沉积法制备双层石墨烯和制备双层石墨烯器件的一系列工作,其中包括最新的研究进展,对生长机理的研究做了详细的介绍和讨论,并对该领域的发展进行了展望.
    Due to its unique properties, graphene is a promising two-dimensional material in optoelectronic and energy applications. While the mobility of single layer graphene is extremely high, it has a zero bandgap. This feature restricts various applications of graphene in the field of semiconductor devices. Bilayer graphene, despite the nature of zero bandgap in its pristine form, can be tuned to open bandgap via a dual-gated vertical electrical field in a controlled manner. However, the size and layer number of mechanically exfoliated and liquid phase exfoliated graphene are poorly controlled. Controllable synthesis of large-sized bilayer graphene is an important research direction. This review summarizes a series of work including the controlled synthesis of bilayer graphene by chemical vapor deposition method and bilayer graphene devices. Specifically, growth mechanism of bilayer graphene is dependent on the type of supporting substrate and experimental condition. In the case of Ni substrate, bilayer graphene is grown along the segregation route. On the other hand, graphene growth on Cu is a surface-mediated process due to the extremely low solubility of C in Cu bulk. Depending on the concentration ratio between CH4 and H2, the growth mode of bilayer graphene can be tuned to be similar to Volmer-Weber or Stranski-Krastanov mode, in which the second layer is either grown under or above the first graphene layer. The dynamic growth of bilayer graphene can be further understood by a chemical gate effect and the process in a confined space. Moreover, here in this paper we present several approaches to realize the better control of bilayer graphene growth by modulating the experimental conditions. In terms of device applications for bilayer graphene, in this review we mention two typical applications including field-effect-transistors and hot-electron bolometers. Compared with conventional silicon-based hot-electron bolometer, the bilayer graphene based hot-electron bolometer has a small heat capacity and weak electron-phonon coupling, leading to high sensitivity, fast response, and small thermal noise-equivalent power. Such a bilayer graphene bolometer shows an exceptionally low noise-equivalent power and intrinsic speed three to five orders of magnitude higher than commercial silicon bolometers and superconducting transition-edge sensors at similar temperatures. Finally, the outlook and challenge for future research are also given. While significant progress has been made in the past several years, the controlled growth of bilayer or multi-layer graphene is still a key challenge, and the growth mechanism of bilayer graphene is not yet understood clearly. There is still much room for controlling graphene layer numbers, twisted angles, size, quality, and yield by optimizing the conditions. On the other hand, for the device applications of bilayer graphene, it is highly desired to develop high-performance bilayer graphene-based electronic devices.
      通信作者: 武斌, wubin@iccas.ac.cn;liuyq@iccas.ac.cn ; 刘云圻, wubin@iccas.ac.cn;liuyq@iccas.ac.cn
    • 基金项目: 国家自然科学基金(批准号:21633012,21273243,51233006,61390500)、国家重点研发计划(批准号:2016YFA0200101)、国家重点基础研究发展计划(批准号:2013CB933500,2013CBA01602)、北京市科技计划(批准号:Z161100002116025)和中国科学院先导专项B类项目(批准号:XDB12030100)资助的课题.
      Corresponding author: Wu Bin, wubin@iccas.ac.cn;liuyq@iccas.ac.cn ; Liu Yun-Qi, wubin@iccas.ac.cn;liuyq@iccas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21633012, 21273243, 51233006, 61390500), the National Key RD Program of China (Grant No. 2016YFA0200101), the National Basic Research Program of China (Grant Nos. 2013CB933500, 2013CBA01602), the Beijing Municipal Science and Technology Commission, China (Grant No. Z161100002116025), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB12030100).
    [1]

    Novoselov K S, Geim A K, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A 2005 Nature 438 197

    [2]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gun'Ko Y K, Boland J J 2008 Nat. Nanotech. 3 563

    [3]

    Hass J, Varchon F, Millan-Otoya J E, Sprinkle M, Sharma N, de Heer W A, Berger C, First P N, Magaud L, Conrad E H 2008 Phys. Rev. Lett. 100 125504

    [4]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mllen K 2010 Nature 466 470

    [5]

    Ta H Q, Perello D J, Duong D L, Han G H, Gorantla S, Nguyen V L, Bachmatiuk A, Rotkin S V, Lee Y H, Rmmeli M H 2016 Nano Lett. 16 6403

    [6]

    Li Y, Wu B, Guo W, Wang L, Li J, Liu Y 2017 Nanotechnology 28 265101

    [7]

    Geng D, Wu B, Guo Y, Huang L, Xue Y, Chen J, Yu G, Jiang L, Hu W, Liu Y 2012 Proc. Natl Acad. Sci. USA 109 7992

    [8]

    Hao Y, Wang L, Liu Y, Chen H, Wang X, Tan C, Nie S, Suk J W, Jiang T, Liang T, Xiao J, Ye W, Dean C R, Yakobson B I, McCarty K F, Kim P, Hone J, Colombo L, Ruoff R S 2016 Nat. Nanotech. 11 426

    [9]

    Hao Y, Bharathi M S, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y, Kim P, Hone J, Colombo L, Ruoff R S 2013 Science 342 720

    [10]

    Zhou H, Yu W J, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X 2013 Nat. Commun. 4 2096

    [11]

    Liu L, Zhou H, Cheng R, Yu W J, Liu Y, Chen Y, Shaw J, Zhong X, Huang Y, Duan X 2012 ACS Nano 6 8241

    [12]

    Gong Y, Zhang X, Liu G, Wu L, Geng X, Long M, Cao X, Guo Y, Li W, Xu J, Sun M, Lu L, Liu L 2012 Adv. Funct. Mater. 22 3153

    [13]

    Yan Z, Peng Z, Sun Z, Yao J, Zhu Y, Liu Z, Ajayan P M, Tour J M 2011 ACS Nano 5 8187

    [14]

    Peng Z, Yan Z, Sun Z, Tour J M 2011 ACS Nano 5 8241

    [15]

    Xue Y, Wu B, Guo Y, Huang L, Jiang L, Chen J, Geng D, Liu Y, Hu W, Yu G 2011 Nano Res. 4 1208

    [16]

    Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo C M, Tsuji M, Ikeda K I, Mizuno S 2010 ACS Nano 4 7407

    [17]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43

    [18]

    Yan K, Peng H, Zhou Y, Li H, Liu Z 2011 Nano Lett. 11 1106

    [19]

    Yang C, Wu T, Wang H, Zhang G, Sun J, Lu G, Niu T, Li A, Xie X, Jiang M 2016 Small 12 2009

    [20]

    Tang S, Wang H, Wang H S, Sun Q, Zhang X, Cong C, Xie H, Liu X, Zhou X, Huang F, Chen, X, Yu T, Ding F, Xie X, Jiang M 2015 Nat. Commun. 6 6499

    [21]

    Guermoune A, Chari T, Popescu F, Sabri S S, Guillemette J, Skulason H S, Szkopek T, Siaj M 2011 Carbon 49 4204

    [22]

    Li Q, Zhao Z, Yan B, Song X, Zhang Z, Li J, Wu X, Bian Z, Zou X, Zhang Y, Liu Z 2017 Adv. Mater. 29 1701325

    [23]

    Xue Y, Wu B, Jiang L, Guo Y, Huang L, Chen J, Tan J, Geng D, Luo B, Hu W, Yu G, Liu Y 2012 J. Am. Chem. Soc. 134 11060

    [24]

    Partoens B, Peeters F M 2006 Phys. Rev. B 74 075404

    [25]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [26]

    Liu W, Li H, Xu C, Khatami Y, Banerjee K 2011 Carbon 49 4122

    [27]

    Li X, Cai W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268

    [28]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820

    [29]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238

    [30]

    Sato Y, Takai K, Enoki T 2011 Nano Lett. 11 3468

    [31]

    Yan J, Kim M H, Elle J A, Sushkov A B, Jenkins G S, Milchberg H W M, Fuhrer M S, Drew H D 2012 Nat. Nanotech. 7 472

  • [1]

    Novoselov K S, Geim A K, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A 2005 Nature 438 197

    [2]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gun'Ko Y K, Boland J J 2008 Nat. Nanotech. 3 563

    [3]

    Hass J, Varchon F, Millan-Otoya J E, Sprinkle M, Sharma N, de Heer W A, Berger C, First P N, Magaud L, Conrad E H 2008 Phys. Rev. Lett. 100 125504

    [4]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mllen K 2010 Nature 466 470

    [5]

    Ta H Q, Perello D J, Duong D L, Han G H, Gorantla S, Nguyen V L, Bachmatiuk A, Rotkin S V, Lee Y H, Rmmeli M H 2016 Nano Lett. 16 6403

    [6]

    Li Y, Wu B, Guo W, Wang L, Li J, Liu Y 2017 Nanotechnology 28 265101

    [7]

    Geng D, Wu B, Guo Y, Huang L, Xue Y, Chen J, Yu G, Jiang L, Hu W, Liu Y 2012 Proc. Natl Acad. Sci. USA 109 7992

    [8]

    Hao Y, Wang L, Liu Y, Chen H, Wang X, Tan C, Nie S, Suk J W, Jiang T, Liang T, Xiao J, Ye W, Dean C R, Yakobson B I, McCarty K F, Kim P, Hone J, Colombo L, Ruoff R S 2016 Nat. Nanotech. 11 426

    [9]

    Hao Y, Bharathi M S, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y, Kim P, Hone J, Colombo L, Ruoff R S 2013 Science 342 720

    [10]

    Zhou H, Yu W J, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X 2013 Nat. Commun. 4 2096

    [11]

    Liu L, Zhou H, Cheng R, Yu W J, Liu Y, Chen Y, Shaw J, Zhong X, Huang Y, Duan X 2012 ACS Nano 6 8241

    [12]

    Gong Y, Zhang X, Liu G, Wu L, Geng X, Long M, Cao X, Guo Y, Li W, Xu J, Sun M, Lu L, Liu L 2012 Adv. Funct. Mater. 22 3153

    [13]

    Yan Z, Peng Z, Sun Z, Yao J, Zhu Y, Liu Z, Ajayan P M, Tour J M 2011 ACS Nano 5 8187

    [14]

    Peng Z, Yan Z, Sun Z, Tour J M 2011 ACS Nano 5 8241

    [15]

    Xue Y, Wu B, Guo Y, Huang L, Jiang L, Chen J, Geng D, Liu Y, Hu W, Yu G 2011 Nano Res. 4 1208

    [16]

    Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo C M, Tsuji M, Ikeda K I, Mizuno S 2010 ACS Nano 4 7407

    [17]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43

    [18]

    Yan K, Peng H, Zhou Y, Li H, Liu Z 2011 Nano Lett. 11 1106

    [19]

    Yang C, Wu T, Wang H, Zhang G, Sun J, Lu G, Niu T, Li A, Xie X, Jiang M 2016 Small 12 2009

    [20]

    Tang S, Wang H, Wang H S, Sun Q, Zhang X, Cong C, Xie H, Liu X, Zhou X, Huang F, Chen, X, Yu T, Ding F, Xie X, Jiang M 2015 Nat. Commun. 6 6499

    [21]

    Guermoune A, Chari T, Popescu F, Sabri S S, Guillemette J, Skulason H S, Szkopek T, Siaj M 2011 Carbon 49 4204

    [22]

    Li Q, Zhao Z, Yan B, Song X, Zhang Z, Li J, Wu X, Bian Z, Zou X, Zhang Y, Liu Z 2017 Adv. Mater. 29 1701325

    [23]

    Xue Y, Wu B, Jiang L, Guo Y, Huang L, Chen J, Tan J, Geng D, Luo B, Hu W, Yu G, Liu Y 2012 J. Am. Chem. Soc. 134 11060

    [24]

    Partoens B, Peeters F M 2006 Phys. Rev. B 74 075404

    [25]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [26]

    Liu W, Li H, Xu C, Khatami Y, Banerjee K 2011 Carbon 49 4122

    [27]

    Li X, Cai W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268

    [28]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820

    [29]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238

    [30]

    Sato Y, Takai K, Enoki T 2011 Nano Lett. 11 3468

    [31]

    Yan J, Kim M H, Elle J A, Sushkov A B, Jenkins G S, Milchberg H W M, Fuhrer M S, Drew H D 2012 Nat. Nanotech. 7 472

  • [1] 姜阳阳, 夏晓霜, 李建波. 双层石墨烯薄膜体系中的四波混频特性.  , 2023, 72(12): 126801. doi: 10.7498/aps.72.20230012
    [2] 周畅, 龚蕊, 冯小波. 垂直电场下扭转双层石墨烯光学吸收性质的理论研究.  , 2022, 71(5): 054203. doi: 10.7498/aps.71.20211406
    [3] 周畅, 龚蕊, 冯小波. 垂直电场下扭转双层石墨烯光学吸收性质的理论研究.  , 2021, (): . doi: 10.7498/aps.70.20211406
    [4] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能.  , 2020, 69(8): 087801. doi: 10.7498/aps.69.20191923
    [5] 王文旭, 任衍彪, 张世超, 张临财, 亓敬波, 何小武. 类化学气相沉积法制备缺陷可控的三维石墨烯泡沫及其复合电极电化学性能.  , 2020, 69(14): 148101. doi: 10.7498/aps.69.20200454
    [6] 王文杰, 康智林, 宋茜, 王鑫, 邓加军, 丁迅雷, 车剑滔. 层数变化对堆叠生长的MoS2(1-x) Se2x电子结构的影响.  , 2018, 67(24): 240601. doi: 10.7498/aps.67.20181494
    [7] 黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳. 六角星形MoSe2双层纳米片的制备及其光致发光性能.  , 2017, 66(13): 137801. doi: 10.7498/aps.66.137801
    [8] 李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成. 铜基底上双层至多层石墨烯常压化学气相沉积法制备与机理探讨.  , 2017, 66(5): 058101. doi: 10.7498/aps.66.058101
    [9] 吴晓萍, 刘金养, 林丽梅, 郑卫峰, 瞿燕, 赖发春. ZnO纳米花的制备及其性能.  , 2015, 64(20): 207802. doi: 10.7498/aps.64.207802
    [10] 刘浩, 薛玉明, 乔在祥, 李微, 张超, 尹富红, 冯少君. 铜锌锡硫薄膜材料及其器件应用研究进展.  , 2015, 64(6): 068801. doi: 10.7498/aps.64.068801
    [11] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究.  , 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [12] 何琼, 许向东, 温粤江, 蒋亚东, 敖天宏, 樊泰君, 黄龙, 马春前, 孙自强. 溶胶凝胶制备氧化钒薄膜的生长机理及光电特性.  , 2013, 62(5): 056802. doi: 10.7498/aps.62.056802
    [13] 何龙, 宋筠. 双层石墨烯材料中无序导致超导-绝缘体相变的数值研究.  , 2013, 62(5): 057303. doi: 10.7498/aps.62.057303
    [14] 袁泽, 高红, 徐玲玲, 陈婷婷, 郎颖. In, Al共掺杂ZnO纳米串光电探测器的组装与研究.  , 2012, 61(5): 057201. doi: 10.7498/aps.61.057201
    [15] 贾曦, 刘爱萍, 刘洋溢, 唐为华, 王君伟. SnO2微纳米材料的合成及其生长机理研究.  , 2009, 58(4): 2572-2577. doi: 10.7498/aps.58.2572
    [16] 张永炬, 余森江, 葛洪良, 邬良能, 崔玉建. 硅油基底表面铁薄膜的生长机理及表面有序结构.  , 2006, 55(10): 5444-5450. doi: 10.7498/aps.55.5444
    [17] 彭英才, 池田弥央, 宫崎诚一. Si纳米量子点的LPCVD自组织化形成及其生长机理研究.  , 2003, 52(12): 3108-3113. doi: 10.7498/aps.52.3108
    [18] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究.  , 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
    [19] 王引书, 孙萍, 丁硕, 罗旭辉, 李娜, 王若桢. 玻璃中CdSeS纳米晶体的生长及其性能.  , 2002, 51(12): 2892-2895. doi: 10.7498/aps.51.2892
    [20] 胡颖. 微波等离子体化学气相沉积方法在Si衬底上生长SiC纳米线.  , 2001, 50(12): 2452-2455. doi: 10.7498/aps.50.2452
计量
  • 文章访问数:  7531
  • PDF下载量:  310
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-05
  • 修回日期:  2017-07-28
  • 刊出日期:  2017-11-05

/

返回文章
返回
Baidu
map