搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率光纤中传输光模式与其波长相关性研究

梁井川 冯国英 张澍霖 兰斌 周寿桓

引用本文:
Citation:

高功率光纤中传输光模式与其波长相关性研究

梁井川, 冯国英, 张澍霖, 兰斌, 周寿桓

Analysis of wavelength dependence of mode in high power fiber laser

Liang Jing-Chuan, Feng Guo-Ying, Zhang Shu-Lin, Lan Bin, Zhou Shou-Huan
PDF
导出引用
  • 针对高功率光纤激光模式诊断和光谱诊断的需求,研究了光纤中传输模式的波长相关性,数值计算了光纤中各个模式的模场分布随波长的变化曲线及相应的光束质量,采用双傅里叶变换F2法实际测量了光纤模式成分与波长的关系曲线.结果表明,光纤中各个模式的模场分布随波长变化,波长越长,模场面积越大;模式的光束质量随波长变化不大,但在截止频率附近明显变差;光纤中各个模式的功率占比与波长有关.
    High power fiber lasers and amplifiers are widely used in the scientific and industrial field. In order to meet the requirements for high output powers the effective area of fibers becomes larger and larger to reduce optical nonlinearities. With the increase of effective area, the number of high-order modes will increase. In the case of high output power, the spectral shift and broadening of the optical fiber will also affect the modal number and content. The number and content of fiber modes affect the pointing stablity and quality of the laser beam. The M2-parameter is commonly used to define the quality of the laser beam, but a small M2 number is not guaranteed for single mode operation. Therefore, the relationship between wavelength and transmission mode in fiber transmission is studied in this paper. We use the spatial and spectral Fourier transform (F2) method to establish a theoretical-experimental method of describing the relationship between wavelength and mode. This method can directly give out the modal content of optical fibers without any priori parameter such as the properties of fiber and requirement for setup accuracy. On the one hand, the theoretical modeling of wavelength affects modal content. In the simulation, the sources with the same wavelength bandwidth and different central wavelengths are used to test the fiber. The results show that the modal content and number of the fiber change with the wavelength bandwidth and center wavelength. The mode components of the corresponding optical fiber will change after changing the central wavelength. As the spectral width of the light source increases, the number of high-order modes increases. On the other hand, in order to further verify the relationship between wavelength and mode of fiber, the F2 method is used to measure the optical fiber modal content with different wavelengths. The final experimental results are in agreement with the theoretical results. The experimental and simulation results show that the mode field distribution of each mode varies with wavelength:the longer the wavelength, the larger the mode field is. The beam quality has little change with the wavelength except for those positions with frequency near the cutoff frequency, and the power ratio of each mode relates to the wavelength.
      通信作者: 冯国英, guoing_feng@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574221)和国家高技术研究发展计划(批准号:JG2011105)资助的课题.
      Corresponding author: Feng Guo-Ying, guoing_feng@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574221) and the National High Technology Research and Development Program of China (Grant No. JG2011105).
    [1]

    Zhou P, Liu Z J, Xu X J, Chen Z L 2008 Appl. Opt. 47 3350

    [2]

    Koplow J P, Kliner D A V, Goldberg L 2000 Opt. Lett. 25 442

    [3]

    Nicholson J W, Fini J M, Yablon A D, Westbrook P S, Feder K, Headley C 2007 Opt. Lett. 32 2562

    [4]

    Zheng X J, Ren G B, Huang L, Zheng H L 2016 Acta Phys. Sin. 65 064208 (in Chinese)[郑兴娟, 任国斌, 黄琳, 郑鹤玲 2016 65 064208]

    [5]

    Limpert J, Schreiber T, Nolte S, Zellmer H, Tnnermann A, Iliew R, Lederer F, Broeng J, Vienne G, Petersson A, Jakobsen C 2003 Opt. Express 11 818

    [6]

    Olshansky R, Keck D B 1976 Appl. Opt. 15 483

    [7]

    Feng Y, Taylor L R, Calia D B 2009 Opt. Express 17 23678

    [8]

    Jauregui C, Eidam T, Otto H J, Stutzki F, Jansen F, Limpert J, Tnnermann A 2012 Opt. Express 20 12912

    [9]

    Stutzki F, Otto H J, Jansen F, Gaida C, Jauregui C, Limpert J, Tnnermann A 2011 Opt. Lett. 36 4572

    [10]

    Yoda H, Polynkin P, Mansuripur M 2006 J. Lightwave Technol. 24 1350

    [11]

    Fu Y Q, Feng G Y, Zhang D Y, Chen J G, Zhou S H 2010 Optik 121 452

    [12]

    Wielandy S 2007 Opt. Express 15 15402

    [13]

    Schimpf D N, Barankov R A, Ramachandran S 2011 Opt. Express 19 13008

    [14]

    Nandi P, Chen Z L, Witkowska A, Wadsworth W J, Birks T A, Knight J C 2009 Opt. Lett. 34 1123

    [15]

    Kaiser T, Flamm D, Schrter S, Duparr M 2009 Opt. Express 17 9347

    [16]

    Paurisse M, Lvque L, Hanna M, Druon F, Georges P 2012 Opt. Express 20 4074

    [17]

    Hu L L, Feng G Y, Dong Z L 2015 Infrar. Laser Eng. 44 2517 (in Chinese)[胡丽荔, 冯国英, 董哲良 2015 红外与激光工程 44 2517]

    [18]

    Nicholson J W, Yablon A D, Ramachandran S, Ghalmi S 2008 Opt. Express 16 7233

    [19]

    Nicholson J W, Yablon A D, Fini J M, Mermelstein M D 2009 IEEE J. Quantum Electron. 15 61

    [20]

    Nguyen D M, Blin S, Nguyen T N, Le S D, Provino L, Thual M, Chartier T 2012 Appl. Opt. 51 450

    [21]

    Zhang S L, Feng G Y, Zhou S H 2016 Acta Phys. Sin. 65 154202 (in Chinese)[张澍霖, 冯国英, 周寿桓 2016 65 154202]

    [22]

    Gloge D 1971 Appl. Opt. 10 2252

    [23]

    Tan X F, Liu X L, Zhao W, Li C, Wang Y S, Li J F 2013 Opt. Commun. 294 148

  • [1]

    Zhou P, Liu Z J, Xu X J, Chen Z L 2008 Appl. Opt. 47 3350

    [2]

    Koplow J P, Kliner D A V, Goldberg L 2000 Opt. Lett. 25 442

    [3]

    Nicholson J W, Fini J M, Yablon A D, Westbrook P S, Feder K, Headley C 2007 Opt. Lett. 32 2562

    [4]

    Zheng X J, Ren G B, Huang L, Zheng H L 2016 Acta Phys. Sin. 65 064208 (in Chinese)[郑兴娟, 任国斌, 黄琳, 郑鹤玲 2016 65 064208]

    [5]

    Limpert J, Schreiber T, Nolte S, Zellmer H, Tnnermann A, Iliew R, Lederer F, Broeng J, Vienne G, Petersson A, Jakobsen C 2003 Opt. Express 11 818

    [6]

    Olshansky R, Keck D B 1976 Appl. Opt. 15 483

    [7]

    Feng Y, Taylor L R, Calia D B 2009 Opt. Express 17 23678

    [8]

    Jauregui C, Eidam T, Otto H J, Stutzki F, Jansen F, Limpert J, Tnnermann A 2012 Opt. Express 20 12912

    [9]

    Stutzki F, Otto H J, Jansen F, Gaida C, Jauregui C, Limpert J, Tnnermann A 2011 Opt. Lett. 36 4572

    [10]

    Yoda H, Polynkin P, Mansuripur M 2006 J. Lightwave Technol. 24 1350

    [11]

    Fu Y Q, Feng G Y, Zhang D Y, Chen J G, Zhou S H 2010 Optik 121 452

    [12]

    Wielandy S 2007 Opt. Express 15 15402

    [13]

    Schimpf D N, Barankov R A, Ramachandran S 2011 Opt. Express 19 13008

    [14]

    Nandi P, Chen Z L, Witkowska A, Wadsworth W J, Birks T A, Knight J C 2009 Opt. Lett. 34 1123

    [15]

    Kaiser T, Flamm D, Schrter S, Duparr M 2009 Opt. Express 17 9347

    [16]

    Paurisse M, Lvque L, Hanna M, Druon F, Georges P 2012 Opt. Express 20 4074

    [17]

    Hu L L, Feng G Y, Dong Z L 2015 Infrar. Laser Eng. 44 2517 (in Chinese)[胡丽荔, 冯国英, 董哲良 2015 红外与激光工程 44 2517]

    [18]

    Nicholson J W, Yablon A D, Ramachandran S, Ghalmi S 2008 Opt. Express 16 7233

    [19]

    Nicholson J W, Yablon A D, Fini J M, Mermelstein M D 2009 IEEE J. Quantum Electron. 15 61

    [20]

    Nguyen D M, Blin S, Nguyen T N, Le S D, Provino L, Thual M, Chartier T 2012 Appl. Opt. 51 450

    [21]

    Zhang S L, Feng G Y, Zhou S H 2016 Acta Phys. Sin. 65 154202 (in Chinese)[张澍霖, 冯国英, 周寿桓 2016 65 154202]

    [22]

    Gloge D 1971 Appl. Opt. 10 2252

    [23]

    Tan X F, Liu X L, Zhao W, Li C, Wang Y S, Li J F 2013 Opt. Commun. 294 148

  • [1] 吴婉玲, 王向珂, 虞华康, 李志远. 基于微纳光纤双模式干涉的亚波长聚焦光场及光捕获应用.  , 2024, 73(10): 100401. doi: 10.7498/aps.73.20240181
    [2] 王健, 吴重庆. 低差分模式群时延少模光纤的变分法分析及优化.  , 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [3] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法.  , 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [4] 薛艳茹, 田朋飞, 金娃, 赵能, 靳云, 毕卫红. 基于少模长周期光纤叠栅的模式转换器.  , 2019, 68(5): 054204. doi: 10.7498/aps.68.20181674
    [5] 陈嘉伟, 王金栋, 曲兴华, 张福民. 光频梳频域干涉测距主要参数分析及一种改进的数据处理方法.  , 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [6] 才啟胜, 黄旻, 韩炜, 刘怡轩, 路向宁. 大孔径空间外差干涉光谱成像技术多谱段成像仿真.  , 2018, 67(23): 234205. doi: 10.7498/aps.67.20180943
    [7] 李丽君, 马茜, 曹茂永, 宫顺顺, 李文宪, 丁小哲, 刘仪琳, 徐琳, 刘倩. 全光纤干涉式结构中传感模式仿真分析.  , 2017, 66(22): 220202. doi: 10.7498/aps.66.220202
    [8] 张澍霖, 冯国英, 周寿桓. 基于空间域和频率域傅里叶变换F2的光纤模式成分分析.  , 2016, 65(15): 154202. doi: 10.7498/aps.65.154202
    [9] 肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明. 基于少模光纤的全光纤熔融模式选择耦合器的设计及实验研究.  , 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [10] 徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫. 具有四模式的低串扰及大群时延多芯微结构光纤的设计.  , 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [11] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量.  , 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [12] 李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国. 基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究.  , 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [13] 李方家, 刘军, 李儒新. 基于自衍射效应的自参考光谱干涉方法的研究.  , 2013, 62(6): 064211. doi: 10.7498/aps.62.064211
    [14] 严新革, 张淳民, 赵葆常. 时空混合调制型偏振干涉成像光谱仪干涉图获取模式研究.  , 2010, 59(5): 3123-3129. doi: 10.7498/aps.59.3123
    [15] 张 虎, 王秋国, 杨伯君, 于 丽. 基于正方形格子的空芯光子带隙光纤的模式特性和泄漏损耗.  , 2008, 57(9): 5722-5728. doi: 10.7498/aps.57.5722
    [16] 朱江峰, 杜 强, 王向林, 滕 浩, 韩海年, 魏志义, 侯 洵. 飞秒钛宝石放大激光脉冲的载波包络相位测量与控制.  , 2008, 57(12): 7753-7757. doi: 10.7498/aps.57.7753
    [17] 司福祺, 刘建国, 谢品华, 张玉钧, 李 昂, 秦 敏, 李玉金, 窦 科, 李素文, 刘文清. 光纤模式混合器在差分吸收光谱系统中的应用研究.  , 2007, 56(3): 1825-1830. doi: 10.7498/aps.56.1825
    [18] 雷 亮, 文锦辉, 焦中兴, 寿 倩, 吴 羽, 刘鲁宁, 赖天树, 林位株. 无干涉条纹的光谱位相相干直接电场重构法.  , 2006, 55(1): 244-248. doi: 10.7498/aps.55.244
    [19] 任国斌, 王 智, 简水生, 娄淑琴. 双芯光子晶体光纤中的模式干涉.  , 2004, 53(8): 0-0. doi: 10.7498/aps.53.0
    [20] 余寿绵, 余恬. 光纤中的电磁对偶变换与导波的模式分析.  , 2001, 50(11): 2179-2184. doi: 10.7498/aps.50.2179
计量
  • 文章访问数:  6584
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-21
  • 修回日期:  2017-07-07
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map