搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂非晶氧化硅薄膜中三元化合态与电子结构的第一性原理计算

万亚州 高明 李勇 郭海波 李拥华 徐飞 马忠权

引用本文:
Citation:

掺杂非晶氧化硅薄膜中三元化合态与电子结构的第一性原理计算

万亚州, 高明, 李勇, 郭海波, 李拥华, 徐飞, 马忠权

First principle study of ternary combined-state and electronic structure in amorphous silica

Wan Ya-Zhou, Gao Ming, Li Yong, Guo Hai-Bo, Li Yong-Hua, Xu Fei, Ma Zhong-Quan
PDF
导出引用
  • 基于密度泛函理论和分子动力学方法,研究了ITO-SiOx(In,Sn)/n-Si异质结光伏器件中非晶SiOx层的氧化态和电子结构.计算结果表明:具有钝化隧穿功能的超薄(x层,是由In,Sn,O,Si四种元素相互扩散形成的,其中In,Sn元素在SiOx网格中以In–O–Si和Sn–O–Si成键态存在,形成了三元化合物.In和Sn的掺杂不仅在SiOx的带隙中分别引入了Ev+4.60 eV和Ev+4.0 eV两个电子能级,还产生了与In离子相关的浅掺杂受主能级(Ev+0.3 eV).这些量子态一方面使SiOx的性能得到改善,在n-Si表面形成与反型层相衔接的p-型宽禁带“准半导体”,减少了载流子的复合,促进了内建电场的建立.另一方面有效地降低了异质结势垒高度,增强了ITO-SiOx(In,Sn)/n-Si光伏器件中光生非平衡载流子的传输概率,促进了填充因子的提升(>72%).
    In this paper, for the ITO-SiOx (In, Sn)/n-Si photovoltaic device, the molecular coacervate of In–O–Si bonding and two kinds of quantum states for indium-grafted in amorphous silicon oxide a-SiOx (In, Sn) layers are predicted by molecular dynamics simulation and density function theory calculation, respectively. The results show that the SiOx layers are the result of the inter-diffusion of the In, Sn, O, Si element. Moreover, In–O–Si and Sn–O–Si bonding hybird structures existing in the SiOx layers are found. From the result of formation energy calculations, we show that the formation energies of such an In–O–Si configuration are 5.38 eV for Si-rich condition and 4.27 eV for In-rich condition respectively, which are both lower than the energy (10 eV) provided in our experiment environment. It means that In–O–Si configuration is energetically favorable. By the energy band calculations, In and Sn doping induced gap states (Ev+4.60 eV for In, Ev+4.0 eV for Sn) within a-SiO2 band gap are found, which are different from the results of doping of B, Al, Ga or other group-Ⅲ and V elements. The most interesting phenomena are that there is either a transition level at Ev+0.3 eV for p-type conductive conversion or an extra level at Ev+4.60 eV induced by In doping within the dielectric amorphous oxide (a-SiOx) model. These gap states (GSⅡ and GSIS) could lower the tunneling barrier height and increase the probability of tunneling, facilitate the transport of photo-generated holes, strengthen the short circuit current, and/or create negatively charged defects to repel electrons, thereby suppressing carrier recombination at the p-type inversion layer and promoting the establishment of the effective built-in-potential, increasing the open-circuit voltage and fill factor. Therefore, the multi-functions such as good passivation, built-in field, inversion layer and carriers tunneling are integrated into the a-SiOx (In, Sn) materials, which may be a good candidate for the selective contact of silicon-based high efficient heterojunction solar cells in the future. This work can help us to promote the explanations of the electronic structure and hole tunneling transport in ITO-SiOx/n-Si photovoltaic device and predict that In–O–Si compound could be as an excellent passivation tunneling selective material.
      通信作者: 马忠权, zqma@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61674099,61274067,60876045)和索朗光伏材料与器件R&D联合实验室基金(批准号:SS-E0700601)资助的课题.
      Corresponding author: Ma Zhong-Quan, zqma@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674099, 61274067, 60876045) and the R&D Foundation of SHU-SOENs PV Joint Lab (Grant No. SS-E0700601).
    [1]

    Heng J B, Yu C T, Xu Z, Fu J M 2012 US Patent 0272012 A1

    [2]

    Feldmann F, Bivour M, Reichel C, Steinkemper H, Hermle M, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 131 46

    [3]

    Liu Y Y, Stradins P, Deng H X, Luo J W, Wei S H 2016 Appl. Phys. Lett. 108 022101

    [4]

    Ma Z Q, Du H W, Yang J, Gao M, Chen S M, Wan Y Z 2016 Mater. Today:Proceedings 3 454

    [5]

    Du H W, Yang J, Li Y H, Xu F, Xu J, Ma Z Q 2015 Appl. Phys. Lett. 106 093508

    [6]

    Farnesi C M, Reiner J C, Sennhauser U, Schlapbach L 2007 Phys. Rev. B 76 125205

    [7]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [8]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [9]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [10]

    Tian F H, Liu C B 2006 J. Phys. Chem. B 110 17866

    [11]

    Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2015 Acta Phys. Sin. 64 124210(in Chinese)[赵佰强, 张耘, 邱晓燕, 王学维2015 64 124210]

    [12]

    Bénédicte D, Stefaan D W, Antoine D, Zachary C H, Christophe B 2012 Appl. Phys. Lett. 101 171604

    [13]

    Løvvik O M, Diplas S, Romanyuk A, Ulyashin A 2014 J. Appl. Phys. 115 083705

    [14]

    Mryasov O N, Freeman A 2001 J. Phys. Rev. B 64 233111

    [15]

    Lee H M, Kang S B, Chung K B, Kim H K 2013 Appl. Phys. Lett. 102 021914

    [16]

    Park J W, Hyeon S S, Lee H M, Kim H J, Kim H K, Lee H 2015 J. Appl. Phys. 117 155305

    [17]

    Johannes S, Alfredo P, Roberto C 1995 Phys. Rev. B 52 12690

    [18]

    Han D, West D, Li X B, Xie S Y, Sun H B, Zhang S B 2010 Phys. Rev. B 82 155132

    [19]

    Reid A F, Li C, Ringwood A E 1977 J. Solid. State. Chem. 20 219

    [20]

    Dabney W S, Antolino N E, Luisi B S, Richard A P, Edwards D D 2002 Thin Solid Films 411 192

    [21]

    Karazhanov S Z, Ravindran P, Grossner U 2011 Thin Solid Films 519 6561

    [22]

    Gao M, Du H W, Yang J, Chen S M, Xu J, Ma Z Q 2015 Chin. Sci. Bull. 60 1841(in Chinese)[高明, 杜汇伟, 杨洁, 陈姝敏, 徐静, 马忠权2015科学通报 60 1841]

  • [1]

    Heng J B, Yu C T, Xu Z, Fu J M 2012 US Patent 0272012 A1

    [2]

    Feldmann F, Bivour M, Reichel C, Steinkemper H, Hermle M, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 131 46

    [3]

    Liu Y Y, Stradins P, Deng H X, Luo J W, Wei S H 2016 Appl. Phys. Lett. 108 022101

    [4]

    Ma Z Q, Du H W, Yang J, Gao M, Chen S M, Wan Y Z 2016 Mater. Today:Proceedings 3 454

    [5]

    Du H W, Yang J, Li Y H, Xu F, Xu J, Ma Z Q 2015 Appl. Phys. Lett. 106 093508

    [6]

    Farnesi C M, Reiner J C, Sennhauser U, Schlapbach L 2007 Phys. Rev. B 76 125205

    [7]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [8]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [9]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [10]

    Tian F H, Liu C B 2006 J. Phys. Chem. B 110 17866

    [11]

    Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2015 Acta Phys. Sin. 64 124210(in Chinese)[赵佰强, 张耘, 邱晓燕, 王学维2015 64 124210]

    [12]

    Bénédicte D, Stefaan D W, Antoine D, Zachary C H, Christophe B 2012 Appl. Phys. Lett. 101 171604

    [13]

    Løvvik O M, Diplas S, Romanyuk A, Ulyashin A 2014 J. Appl. Phys. 115 083705

    [14]

    Mryasov O N, Freeman A 2001 J. Phys. Rev. B 64 233111

    [15]

    Lee H M, Kang S B, Chung K B, Kim H K 2013 Appl. Phys. Lett. 102 021914

    [16]

    Park J W, Hyeon S S, Lee H M, Kim H J, Kim H K, Lee H 2015 J. Appl. Phys. 117 155305

    [17]

    Johannes S, Alfredo P, Roberto C 1995 Phys. Rev. B 52 12690

    [18]

    Han D, West D, Li X B, Xie S Y, Sun H B, Zhang S B 2010 Phys. Rev. B 82 155132

    [19]

    Reid A F, Li C, Ringwood A E 1977 J. Solid. State. Chem. 20 219

    [20]

    Dabney W S, Antolino N E, Luisi B S, Richard A P, Edwards D D 2002 Thin Solid Films 411 192

    [21]

    Karazhanov S Z, Ravindran P, Grossner U 2011 Thin Solid Films 519 6561

    [22]

    Gao M, Du H W, Yang J, Chen S M, Xu J, Ma Z Q 2015 Chin. Sci. Bull. 60 1841(in Chinese)[高明, 杜汇伟, 杨洁, 陈姝敏, 徐静, 马忠权2015科学通报 60 1841]

  • [1] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究.  , 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [2] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [3] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究.  , 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [4] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究.  , 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [5] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究.  , 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [6] 张晓宇, 张丽平, 马忠权, 刘正新. 硅锗量子阱结构在硅异质结太阳电池中应用的数值模拟.  , 2016, 65(13): 138801. doi: 10.7498/aps.65.138801
    [7] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究.  , 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [8] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究.  , 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [9] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究.  , 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [10] 柳福提, 程艳, 陈向荣, 程晓洪, 曾志强. Au-Si60-Au分子结电子输运性质的理论计算.  , 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [11] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究.  , 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [12] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究.  , 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [13] 钟春良, 耿魁伟, 姚若河. a-Si:H/c-Si 异质结太阳电池 J-V 曲线的 S-Shape 现象.  , 2010, 59(9): 6538-6544. doi: 10.7498/aps.59.6538
    [14] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究.  , 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [15] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究.  , 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [16] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究.  , 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [17] 唐 霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣. 冷原子穿越激光束的量子隧穿时间.  , 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [18] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究.  , 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [19] 竺 云, 王太宏. 量子点器件的三端电测量研究.  , 2003, 52(3): 677-682. doi: 10.7498/aps.52.677
    [20] 聂一行, 石云龙, 张云波, 梁九卿, 蒲富恪. 外磁场中单畴反铁磁颗粒的宏观量子效应.  , 2000, 49(8): 1580-1585. doi: 10.7498/aps.49.1580
计量
  • 文章访问数:  5642
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-17
  • 修回日期:  2017-05-27
  • 刊出日期:  2017-09-05

/

返回文章
返回
Baidu
map