搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sr掺杂对La1-xSrxMnO3/LaAlO3/SrTiO3界面电子结构的影响

阮璐风 王磊 孙得彦

引用本文:
Citation:

Sr掺杂对La1-xSrxMnO3/LaAlO3/SrTiO3界面电子结构的影响

阮璐风, 王磊, 孙得彦

Effect of Sr doping on electronic structure of La1-xSrxMnO3/LaAlO3/SrTiO3 heterointerface

Ruan Lu-Feng, Wang Lei, Sun De-Yan
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理计算方法,系统地研究了La1-xSrxMnO3层中Sr的掺杂方式和掺杂量对4La1-xSrxMnO3/3LaAlO3/4SrTiO3(LSMO/LAO/STO)异质结构原子和电子结构的影响.结果表明:对于相同的Sr掺杂量,掺杂方式的差异对体系电子结构的影响微弱,不会导致体系发生金属-绝缘体转变;掺杂量的不同对体系电子结构有着显著的影响,当Sr的掺杂量较少时,LAO/STO界面处存在着准二维电子气,当Sr的掺杂量高于1/3时,LAO/STO界面处准二维电子气消失.我们相信,Sr的引入以及通过Sr掺杂量的改变可以对LSMO覆盖层极化进行调控,这也是导致体系LAO/STO界面处金属-绝缘体转变的可能原因,进一步为极化灾变机制导致的界面处电子重构提供了证据.
    In the past decades, the interface between two oxides LaAlO3 (LAO) and SrTiO3 (STO) has attracted much attention since a quasi-two-dimensional electron gas (q2DEG) at the interface was observed. It is generally believed that polar discontinuity at polar/non-polar oxide interface is responsible for the emergence of q2DEG at the interface. Recently, how to modulate the q2DEG at the interface is becoming a new research focus. Capping other oxide thin layer on LAO layer is one of alternative approaches to controlling the generation of q2DEG at interface. However the mechanism or origin for tuning q2DEG at capped LAO/STO interface has not yet completely understood. Using the first-principles calculations within the density functional theory, the electronic properties of La1-xSrxMnO3-capped LaAlO3/SrTiO3 heterointerfaces with different doping concentrations of Sr atoms are investigated. The system is composed of four layers of La1-xSrxMnO3 (LSMO), three layers of LAO and four layers of STO, denoted as 4LSMO/3LAO/4STO. The interface is normal to the[001] direction of cubic phase, namely (La1-xSrxO) layer and (MnO2) layer appear alternately at LSMO, and (LaO) layer and (AlO2) layer appear alternately at LAO. In the absence of LSMO layers, q2DEG does not appear at the LAO/STO interface. It is found that the electronic structure of 4LSMO/3LAO/4STO can be tuned significantly by capping LSMO layers. For concentration of doped Sr atoms less than 1/3, a q2DEG at LAO/STO interface is observed. In this case, a strong polarization existing in LSMO, together with the polarization in LAO, forces the electrons to be redistributed, thus inducing the q2DEG at LAO/STO interface. With the increase of the concentration of Sr atoms, the polarization in LSMO becomes weaker and weaker. When the concentration is higher than 1/3, the polaried electric field fails to make the electrons redistributed, thus the q2DEG disappears from interface.#br#Another interesting feature of the present work relates to the distribution of Sr atoms in LSMO. It is found that the electronic structure of 4LSMO/3LAO/4STO changes little with respect to the distribution of Sr atoms in LSMO. The system does not undergo the conductor-to-insulator transition for Sr atoms doping at different sites as long as the concentration of Sr does not change. The reason could be understood as follows. The LSMO layer is in a metallic state, the extra electrons, which are generated due to substituting La with Sr, will be delocalized rather than localized at each doped Sr atom. It is reasonable to expect that the electronic structure of the system should be less sensitive to the specific doping site of Sr in LSMO.
      通信作者: 孙得彦, dysun@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11174079)和国家重点基础研究发展计划(批准号:2012CB921401)资助的课题.
      Corresponding author: Sun De-Yan, dysun@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174079) and the National Basic Research Program of China (Grant No. 2012CB921401).
    [1]

    Ohtomo A, Hwang H Y 2004 Nature 427 423

    [2]

    Pentcheva R, Pickett W E 2006 Phys. Rev. B 74 035112

    [3]

    Min S P, Rhim S H, Freeman A J 2006 Phys. Rev. B 74 205416

    [4]

    Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106

    [5]

    Pentcheva R, Pickett W E 2009 Phys. Rev. Lett. 102 107602

    [6]

    Delugas P, Filippetti A, Fiorentini V 2011 Phys. Rev. Lett. 106 166807

    [7]

    Cen C, Thiel S, Mannhart J, Levy J 2009 Science 323 1026

    [8]

    Bark C W, Sharma P, Wang Y, Baek S H, Lee S, Ryu S, Folkman C M, Paudel T R, Kumar A, Kalinin S V, Sokolov A, Tsymbal E Y, Rzchowski M S, Gruverman A, Eom C B 2012 Nano Lett. 12 1765

    [9]

    Thiel S, Hammerl G, Schmehl A, Schneider C W, Mannhart J 2006 Science 313 1942

    [10]

    Rijnders G, Blank D H A 2008 Nat. Mater. 7 270

    [11]

    Cantoni C, Gazquez J, Miletto Granozio F, Oxley M P, Varela M, Lupini A R, Pennycook S J, Aruta C, di Uccio U S, Perna P, Maccariello D 2012 Adv. Mater. 24 3952

    [12]

    Bark C W, Felker D A, Wang Y, Zhang Y, Jang H W, Folkman C M, Park J W, Baek S H, Zhou H, Fong D D, Pan X Q, Tsymbal E Y, Rzchowski M S, Eom C B 2011 Proc. Natl. Acad. Sci. USA 108 4720

    [13]

    Qiao L, Droubay T C, Varga T, Bowden M E, Shutthanandan V, Zhu Z, Chambers S A 2011 Phys. Rev. B 83 085408

    [14]

    Yoshimatsu K, Yasuhara R, Kumigashira H, Oshima M 2008 Phys. Rev. Lett. 101 026802

    [15]

    Bristowe N C, Littlewood P B, Artacho E 2011 Phys. Rev. B 83 205405

    [16]

    Willmott P R, Pauli S A, Herger R, Schleptz C M, Martoccia D, Patterson B D, Delley B, Clarke R, Kumah D, Cionca C, Yacoby Y 2007 Phys. Rev. Lett. 99 155502

    [17]

    Nakagawa N, Hwang H Y, Muller D A 2006 Nat. Mater. 5 204

    [18]

    Janotti A, Bjaalie L, Gordon L, van de Walle C G 2012 Phys. Rev. B 86 86241108(R)

    [19]

    Lee J, Demkov A A 2008 Phys. Rev. B 78 193104

    [20]

    Reinle-Schmitt M L, Cancellieri C, Li D, Fontaine D, Medarde M, Pomjakushina E, Schneider C W, Gariglio S, Ghosez P, Triscone J M, Willmott P R 2012 Nat. Commun. 3 932

    [21]

    Shi Y J, Wang S, Zhou Y, Ding H F, Wu D 2013 Appl. Phys. Lett. 102 071605

    [22]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [23]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [24]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Zhu Y, Shi D N, Du C L, Shi Y G, Ma C L, Gong S J, Zhang K C, Yang Z Q 2011 J. Appl. Phys. 109 116102

    [27]

    Makov G, Payne M C 1995 Phys. Rev. B 51 4014

    [28]

    Baldereschi A, Baroni S, Resta R 1988 Phys. Rev. Lett. 61 734

    [29]

    Yang X P, Su H B 2103 Phys. Rev. B 87 205116

  • [1]

    Ohtomo A, Hwang H Y 2004 Nature 427 423

    [2]

    Pentcheva R, Pickett W E 2006 Phys. Rev. B 74 035112

    [3]

    Min S P, Rhim S H, Freeman A J 2006 Phys. Rev. B 74 205416

    [4]

    Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106

    [5]

    Pentcheva R, Pickett W E 2009 Phys. Rev. Lett. 102 107602

    [6]

    Delugas P, Filippetti A, Fiorentini V 2011 Phys. Rev. Lett. 106 166807

    [7]

    Cen C, Thiel S, Mannhart J, Levy J 2009 Science 323 1026

    [8]

    Bark C W, Sharma P, Wang Y, Baek S H, Lee S, Ryu S, Folkman C M, Paudel T R, Kumar A, Kalinin S V, Sokolov A, Tsymbal E Y, Rzchowski M S, Gruverman A, Eom C B 2012 Nano Lett. 12 1765

    [9]

    Thiel S, Hammerl G, Schmehl A, Schneider C W, Mannhart J 2006 Science 313 1942

    [10]

    Rijnders G, Blank D H A 2008 Nat. Mater. 7 270

    [11]

    Cantoni C, Gazquez J, Miletto Granozio F, Oxley M P, Varela M, Lupini A R, Pennycook S J, Aruta C, di Uccio U S, Perna P, Maccariello D 2012 Adv. Mater. 24 3952

    [12]

    Bark C W, Felker D A, Wang Y, Zhang Y, Jang H W, Folkman C M, Park J W, Baek S H, Zhou H, Fong D D, Pan X Q, Tsymbal E Y, Rzchowski M S, Eom C B 2011 Proc. Natl. Acad. Sci. USA 108 4720

    [13]

    Qiao L, Droubay T C, Varga T, Bowden M E, Shutthanandan V, Zhu Z, Chambers S A 2011 Phys. Rev. B 83 085408

    [14]

    Yoshimatsu K, Yasuhara R, Kumigashira H, Oshima M 2008 Phys. Rev. Lett. 101 026802

    [15]

    Bristowe N C, Littlewood P B, Artacho E 2011 Phys. Rev. B 83 205405

    [16]

    Willmott P R, Pauli S A, Herger R, Schleptz C M, Martoccia D, Patterson B D, Delley B, Clarke R, Kumah D, Cionca C, Yacoby Y 2007 Phys. Rev. Lett. 99 155502

    [17]

    Nakagawa N, Hwang H Y, Muller D A 2006 Nat. Mater. 5 204

    [18]

    Janotti A, Bjaalie L, Gordon L, van de Walle C G 2012 Phys. Rev. B 86 86241108(R)

    [19]

    Lee J, Demkov A A 2008 Phys. Rev. B 78 193104

    [20]

    Reinle-Schmitt M L, Cancellieri C, Li D, Fontaine D, Medarde M, Pomjakushina E, Schneider C W, Gariglio S, Ghosez P, Triscone J M, Willmott P R 2012 Nat. Commun. 3 932

    [21]

    Shi Y J, Wang S, Zhou Y, Ding H F, Wu D 2013 Appl. Phys. Lett. 102 071605

    [22]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [23]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [24]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Zhu Y, Shi D N, Du C L, Shi Y G, Ma C L, Gong S J, Zhang K C, Yang Z Q 2011 J. Appl. Phys. 109 116102

    [27]

    Makov G, Payne M C 1995 Phys. Rev. B 51 4014

    [28]

    Baldereschi A, Baroni S, Resta R 1988 Phys. Rev. Lett. 61 734

    [29]

    Yang X P, Su H B 2103 Phys. Rev. B 87 205116

  • [1] 陈光平, 杨金妮, 乔昌兵, 黄陆君, 虞静. Er3+掺杂TiO2的局域结构及电子性质的第一性原理研究.  , 2022, 71(24): 246102. doi: 10.7498/aps.71.20221847
    [2] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究.  , 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [3] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析.  , 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [4] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究.  , 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [5] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质.  , 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [6]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质.  , 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [7] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究.  , 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [8] 朱学文, 徐利春, 刘瑞萍, 杨致, 李秀燕. N-F共掺杂锐钛矿二氧化钛(101)面纳米管的第一性原理研究.  , 2015, 64(14): 147103. doi: 10.7498/aps.64.147103
    [9] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究.  , 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [10] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [11] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究.  , 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [12] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算.  , 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [13] 王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生. 不同浓度Er掺杂Si纳米晶粒电子结构和光学性质的第一性原理研究.  , 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [14] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算.  , 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [15] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究.  , 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [16] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算.  , 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [17] 徐新发, 邵晓红. Y掺杂SrTiO3晶体材料的电子结构计算.  , 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [18] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究.  , 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [19] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算.  , 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [20] 金胜哲, 黄祖飞, 明 星, 王春忠, 孟 醒, 陈 岗. 二价金属元素掺杂对LiCoO2体系电子输运性质的影响.  , 2007, 56(10): 6008-6012. doi: 10.7498/aps.56.6008
计量
  • 文章访问数:  6068
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-27
  • 修回日期:  2017-06-10
  • 刊出日期:  2017-09-05

/

返回文章
返回
Baidu
map