搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质

  1. 翟顺成 郭平 郑继明 赵普举 索兵兵 万云

引用本文:
Citation:

第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质

  1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云,

First principle study of electronic structures and optical absorption properties of O and S doped graphite phase carbon nitride (g-C3N4)6 quantum dots

Zhai Shun-Cheng, Guo Ping, Zheng Ji-Ming, Zhao Pu-Ju, Suo Bing-Bing, Wan Yun,
PDF
导出引用
  • 利用密度泛函和含时密度泛函理论研究了氧(O)和硫(S)原子掺杂的石墨相氮化碳(g-C3N4)6量子点的几何、电子结构和紫外-可见光吸收性质.结果表明:掺杂后(g-C3N4)6量子点杂质原子周围的CN键长发生了一定的改变,最高电子占据分子轨道-最低电子未占据分子轨道(HOMO-LUMO)能隙显著减小.形成能的计算表明O原子取代掺杂的(g-C3N4)6量子点体系更稳定,且O原子更易取代N3位点,而S原子更易取代N8位点.模拟的紫外-可见电子吸收光谱表明,O和S原子的掺杂改善了(g-C3N4)6量子点的光吸收,使其吸收范围覆盖了整个可见光区域,甚至扩展到了红外区.而且适当的杂质浓度使(g-C3N4)6量子点光吸收在强度和范围上都得到明显改善.通过O和S掺杂的比较,发现二者在可见光区对(g-C3N4)6量子点的光吸收有相似的影响,然而在长波长区域二者的影响有明显差异.总体而言,O掺杂要优于S掺杂对(g-C3N4)6量子点光吸收的影响.
    Graphite phase carbon nitride (g-C3N4) quantum dots have received much attention due to its good stability, water solubility, biological compatibility, non-toxicity as well as strong fluorescence characteristics. In order to enhance the light absorption and improve photocatalytic activities of the g-C3N4 quantum dots, theoretical studies are carried out on the O and S atoms doped (g-C3N4)6 quantum dots. First-principles calculations based on the density functional theory and time dependent density functional theory are performed to investigate the geometries, electronic structures and ultraviolet visible absorption spectra of O and S atoms doped (g-C3N4)6 quantum dots. The results show that the highest electron occupied molecular orbital-the lowest electron unoccupied molecular orbital (HOMO-LUMO) energy gap of doped (g-C3N4)6 quantum dots is significantly reduced though the CN bond lengths closely related to the impurities only change slightly. The calculated formation energies indicate that the O-doped (g-C3N4)6 quantum dots are more stable, and the O atom tends to substitute for N atom at the N3-site, while the S atoms prefer to substitute for N atom at the N8-site. The simulated spectra indicate that the doping of O and S in (g-C3N4)6 could improve the light absorption. Not only the absorption peaks are extended from the UV to the infrared region (e.g. 200-1600 nm), but also the corresponding absorption intensities are enhanced significantly by doping the O or S atoms with the appropriate concentration. The increase of proper impurity concentration will lead to a pronounced red shift in light absorption. The effect of doping site on the optical absorption property of (g-C3N4)6 quantum dots shows that the absorption intensity is mainly affected in the visible range, however, besides the influence on the absorption intensity, the light absorptions of some structures are also affected beyond 800 nm. Overall, the O atoms and S atoms have a substantially similar effect on the light absorption of the (g-C3N4)6 quantum dots, while the effects of these impurity atoms are different in the long wavelength region. Oxygen doping is better than sulfur doping in the absorption of (g-C3N4)6 quantum dots by comparing the doping of O and S. These first-principles studies give us a method to effectively improve the light absorption of g-C3N4 quantum dots, and could provide a theoretical reference for tuning its electronic optical properties and applications.
      通信作者: 郭平, 1121074564@qq.com;guoping@nwu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:21673174)、陕西省自然科学基金(批准号:2014JM2-1008)和2015国家重点实验室瞬态光学与光子技术自然开放基金(批准号:SKLST200915)资助的课题.
      Corresponding author: Guo Ping, 1121074564@qq.com;guoping@nwu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21673174), the Natural Science Foundation of Shanxi Province, China (Grant No. 2014JM2-1008), and the State Key Laboratory of Transient Optics and Photonic Technology 2015 Natural Open Fund, China (Grant No. SKLST200915).
    187102-20171006suppl(1).pdf
    对小尺寸(g-C3N4)n 量子点的几何、电子结构及吸收光谱系统研究的部分结果
    [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Ong W J, Tan L L, Chai S P, Yong S T, Mohamed A R 2014 Chem. Sus. Chem. 7 690

    [3]

    Tan L L, Ong W J, Chai S P, Mohamed A R 2014 Chem. Commun. 50 6923

    [4]

    Chen Y, Wang B, Lin S, Zhang Y, Wang X 2014 J. Phys. Chem. C 118 29981

    [5]

    Ye C, Li J X, Li Z J, Li X B, Fan X B, Zhang L P, Chen B, Tung C H, Wu L Z 2015 ACS Catal. 5 6973

    [6]

    Zhang S L, Wang J X, Huang Y, Zeng M, Xu J 2015 J. Mater. Chem. A 3 10119

    [7]

    Umebayashi T, Yamaki T, Itoh H, Asai K 2002 Appl. Phys. Lett. 81 454

    [8]

    Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G 2004 J. Am. Chem. Soc. 126 4782

    [9]

    Huang Z F, Song J, Pan L, Wang Z, Zhang X, Zou J J, Mi W, Zhang X, Wang L 2015 Nano Energy 12 646

    [10]

    Dong G, Zhao K, Zhang L 2012 Chem. Commun. 48 6178

    [11]

    Ma T Y, Ran J, Dai S, Jaroniec M, Qiao S Z 2015 Angew. Chem. Int. Ed. 54 4646

    [12]

    Xu C, Han Q, Zhao Y, Wang L, Li Y, Qu L J 2015 J. Mater. Chem. A 3 1841

    [13]

    Lu C, Chen R, Wu X, Fan M, Liu Y, Le Z, Jiang S, Song S 2016 Appl. Surf. Sci. 360 1016

    [14]

    Li Y, Hu Y, Zhao Y, Shi G Q, Deng L, Hou Y B, Qu L T 2011 Adv. Mater. 23 776

    [15]

    Zheng Y, Liu J, Liang J, Jaroniec M, Qiao S Z 2012 Energy Environ. Sci. 5 6717

    [16]

    Zhang Z P, Zhang J, Chen N, Qu L T 2012 Energy Environ. Sci. 5 8869

    [17]

    Cao L, Sahu S, Anikumar P, Bunker C E, Xu J, Fernanodo K A S, Wang P, Guliants E A, Tackett K N, Sun Y P 2011 J. Am. Chem. Soc. 133 4754

    [18]

    Song Z P, Lin T R, Lin L H, Lin S, Fu F F, Wang X C, Guo L Q 2016 Angew. Chem. Int. Ed. 55 2773

    [19]

    Chan M H, Chen C W, Lee I J, Chan Y C, Tu D T, Hsiao M, Chen C H, Chen X Y, Liu R S 2016 Inorg. Chem. 55 10267

    [20]

    Fageria P, Uppala S, Nazir R, Gangopadhyay S, Chang C H, Basu M, Pande S 2016 Langmuir 32 10054

    [21]

    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M 2009 Nat. Mater. 8 76

    [22]

    Zhou J, Yang Y, Zhang C Y 2013 Chem. Commun. 49 8605

    [23]

    te Velde G, Bickelhaupt F M, Baerends E J, Fonseca G C, vanGisbergen S J A, Snijders J G, Ziegler T 2001 J. Comput. Chem. 22 931

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [26]

    Casida M E 2009 J. Mol. Struct:Theochem. 914 3

    [27]

    Casida M E, Huix-Rotllant M 2012 Rev. Phys. Chem. 63 287

    [28]

    Schipper P R T, Gritsenko O V, van Gisbergen S J A, Baerends E J 2000 J. Chem. Phys. 112 1344

    [29]

    Liu G, Niu P, Qing L G, Cheng H M 2010 J. Am. Chem. Soc. 132 11642

    [30]

    Ma X G, Lu B, Li D, Shi R, Pan C S, Zhu Y F 2011 J. Phys. Chem. C 115 4680

    [31]

    Zhang J, Zhang G, Chen X, Lin S, Mohlmann L, Dołega G, Lipner G, Antonietti M, Blechert S, Wang X 2012 Angew. Chem. Int. Ed. 51 3183

    [32]

    Huang Z F, Pan L, Zou J J, Zhang X, Wang L 2014 Nano Scale 6 14044

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Ong W J, Tan L L, Chai S P, Yong S T, Mohamed A R 2014 Chem. Sus. Chem. 7 690

    [3]

    Tan L L, Ong W J, Chai S P, Mohamed A R 2014 Chem. Commun. 50 6923

    [4]

    Chen Y, Wang B, Lin S, Zhang Y, Wang X 2014 J. Phys. Chem. C 118 29981

    [5]

    Ye C, Li J X, Li Z J, Li X B, Fan X B, Zhang L P, Chen B, Tung C H, Wu L Z 2015 ACS Catal. 5 6973

    [6]

    Zhang S L, Wang J X, Huang Y, Zeng M, Xu J 2015 J. Mater. Chem. A 3 10119

    [7]

    Umebayashi T, Yamaki T, Itoh H, Asai K 2002 Appl. Phys. Lett. 81 454

    [8]

    Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G 2004 J. Am. Chem. Soc. 126 4782

    [9]

    Huang Z F, Song J, Pan L, Wang Z, Zhang X, Zou J J, Mi W, Zhang X, Wang L 2015 Nano Energy 12 646

    [10]

    Dong G, Zhao K, Zhang L 2012 Chem. Commun. 48 6178

    [11]

    Ma T Y, Ran J, Dai S, Jaroniec M, Qiao S Z 2015 Angew. Chem. Int. Ed. 54 4646

    [12]

    Xu C, Han Q, Zhao Y, Wang L, Li Y, Qu L J 2015 J. Mater. Chem. A 3 1841

    [13]

    Lu C, Chen R, Wu X, Fan M, Liu Y, Le Z, Jiang S, Song S 2016 Appl. Surf. Sci. 360 1016

    [14]

    Li Y, Hu Y, Zhao Y, Shi G Q, Deng L, Hou Y B, Qu L T 2011 Adv. Mater. 23 776

    [15]

    Zheng Y, Liu J, Liang J, Jaroniec M, Qiao S Z 2012 Energy Environ. Sci. 5 6717

    [16]

    Zhang Z P, Zhang J, Chen N, Qu L T 2012 Energy Environ. Sci. 5 8869

    [17]

    Cao L, Sahu S, Anikumar P, Bunker C E, Xu J, Fernanodo K A S, Wang P, Guliants E A, Tackett K N, Sun Y P 2011 J. Am. Chem. Soc. 133 4754

    [18]

    Song Z P, Lin T R, Lin L H, Lin S, Fu F F, Wang X C, Guo L Q 2016 Angew. Chem. Int. Ed. 55 2773

    [19]

    Chan M H, Chen C W, Lee I J, Chan Y C, Tu D T, Hsiao M, Chen C H, Chen X Y, Liu R S 2016 Inorg. Chem. 55 10267

    [20]

    Fageria P, Uppala S, Nazir R, Gangopadhyay S, Chang C H, Basu M, Pande S 2016 Langmuir 32 10054

    [21]

    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M 2009 Nat. Mater. 8 76

    [22]

    Zhou J, Yang Y, Zhang C Y 2013 Chem. Commun. 49 8605

    [23]

    te Velde G, Bickelhaupt F M, Baerends E J, Fonseca G C, vanGisbergen S J A, Snijders J G, Ziegler T 2001 J. Comput. Chem. 22 931

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [26]

    Casida M E 2009 J. Mol. Struct:Theochem. 914 3

    [27]

    Casida M E, Huix-Rotllant M 2012 Rev. Phys. Chem. 63 287

    [28]

    Schipper P R T, Gritsenko O V, van Gisbergen S J A, Baerends E J 2000 J. Chem. Phys. 112 1344

    [29]

    Liu G, Niu P, Qing L G, Cheng H M 2010 J. Am. Chem. Soc. 132 11642

    [30]

    Ma X G, Lu B, Li D, Shi R, Pan C S, Zhu Y F 2011 J. Phys. Chem. C 115 4680

    [31]

    Zhang J, Zhang G, Chen X, Lin S, Mohlmann L, Dołega G, Lipner G, Antonietti M, Blechert S, Wang X 2012 Angew. Chem. Int. Ed. 51 3183

    [32]

    Huang Z F, Pan L, Zou J J, Zhang X, Wang L 2014 Nano Scale 6 14044

  • [1] 张冷, 张鹏展, 刘飞, 李方政, 罗毅, 侯纪伟, 吴孔平. 基于形变势理论的掺杂计算Sb2Se3空穴迁移率.  , 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [2] 吕永杰, 陈燕, 叶方成, 蔡李彬, 戴子杰, 任云鹏. 外加电场和B/N掺杂对锡烯带隙的影响.  , 2024, 73(8): 083101. doi: 10.7498/aps.73.20231935
    [3] 张红艳, 包黎红, 潮洛蒙, 赵凤岐, 刘子忠. 多功能多元稀土六硼化物La1–x Srx B6光吸收及热电子发射机理.  , 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [4] 潘晓剑, 包黎红, 宁军, 赵凤岐, 朝洛蒙, 刘子忠. 多元纳米稀土六硼化物Nd1–xEuxB6粉末的制备及光吸收研究.  , 2021, 70(3): 036101. doi: 10.7498/aps.70.20201288
    [5] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算.  , 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [6] 任超, 李秀燕, 落全伟, 刘瑞萍, 杨致, 徐利春. 空位缺陷对-AgVO3电子结构和光吸收性能的影响.  , 2017, 66(15): 157101. doi: 10.7498/aps.66.157101
    [7] 程超群, 李刚, 张文栋, 李朋伟, 胡杰, 桑胜波, 邓霄. B, P掺杂β-Si3N4的电子结构和光学性质研究.  , 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [8] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究.  , 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [9] 包黎红, 朝洛蒙, 伟伟, 特古斯. 稀土硼化物LaxCe1-xB6亚微米粉的制备及光吸收研究.  , 2015, 64(9): 096104. doi: 10.7498/aps.64.096104
    [10] 杨双波. 温度与外磁场对Si均匀掺杂的GaAs量子阱电子态结构的影响.  , 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [11] 王艳丽, 苏克和, 颜红侠, 王欣. C在不同位置掺杂(n,n)型BN纳米管的密度泛函研究.  , 2014, 63(4): 046101. doi: 10.7498/aps.63.046101
    [12] 刘志民, 赵谡玲, 徐征, 高松, 杨一帆. 红光量子点掺杂PVK体系的发光特性研究.  , 2014, 63(9): 097302. doi: 10.7498/aps.63.097302
    [13] 蒲年年, 李海蓉, 谢龙珍. NiOx作为空穴传输层对有机太阳能电池光吸收的影响.  , 2014, 63(6): 067201. doi: 10.7498/aps.63.067201
    [14] 杨双波. 掺杂浓度及掺杂层厚度对Si均匀掺杂的GaAs量子阱中电子态结构的影响.  , 2013, 62(15): 157301. doi: 10.7498/aps.62.157301
    [15] 徐金荣, 王影, 朱兴凤, 李平, 张莉. N掺杂和N-V共掺杂锐钛矿相TiO2的第一性原理研究.  , 2012, 61(20): 207103. doi: 10.7498/aps.61.207103
    [16] 许佳雄, 姚若河. n-ZnO:Al/i-ZnO/n-CdS/p-Cu2ZnSnS4太阳能电池光伏特性的分析.  , 2012, 61(18): 187304. doi: 10.7498/aps.61.187304
    [17] 周传仓, 刘发民, 丁芃, 钟文武, 蔡鲁刚, 曾乐贵. 钶铁矿型MnNb2O6的熔盐法合成、钒掺杂与磁性研究.  , 2011, 60(4): 048101. doi: 10.7498/aps.60.048101
    [18] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究.  , 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [19] 徐新发, 邵晓红. Y掺杂SrTiO3晶体材料的电子结构计算.  , 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [20] 王银海, 牟季美, 蔡维理, 许彦旗. 纳米Cu/Al2O3组装体模板合成与光吸收.  , 2001, 50(9): 1751-1755. doi: 10.7498/aps.50.1751
  • 187102-20171006suppl(1).pdf
    对小尺寸(g-C3N4)n 量子点的几何、电子结构及吸收光谱系统研究的部分结果
计量
  • 文章访问数:  10186
  • PDF下载量:  596
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-05
  • 修回日期:  2017-06-18
  • 刊出日期:  2017-09-05

/

返回文章
返回
Baidu
map