搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气损耗对量子干涉雷达的影响机理

王书 任益充 饶瑞中 苗锡奎

引用本文:
Citation:

大气损耗对量子干涉雷达的影响机理

王书, 任益充, 饶瑞中, 苗锡奎

Influence of atmosphere attenuation on quantum interferometric radar

Wang Shu, Ren Yi-Chong, Rao Rui-Zhong, Miao Xi-Kui
PDF
导出引用
  • 以马赫-曾德尔干涉仪作为基本模型对量子干涉雷达的探测原理进行分析,讨论了目标探测过程中光场量子态的具体演化情况,并采用宇称算符作为相位检测算符分析了量子干涉雷达的回波信号,将其与基于振幅检测的经典雷达回波信号进行比较,证明量子干涉雷达具有超越衍射极限的超分辨率特性.此外,针对大气损耗的进一步研究显示:量子干涉雷达分辨率受大气损耗影响较小,且可通过增大脉冲光子数N克服其影响;而量子干涉雷达的灵敏度则受到较大影响,尤其当两路光的损耗情况不同时,灵敏度随N的增加呈现先升高后降低的趋势;当两路光损耗情况相同时,系统灵敏度随N的增加而升高且正比于1/N.综上,可根据探测光的大气损耗情况适当调节参考光的衰减来克服大气损耗带来的不良影响.
    There has been aroused much interest in quantum metrology such as quantum radar, due to its applications in sub-Raleigh ranging and remote sensing. For quantum radar, the atmospheric absorption and diffraction rapidly degrade any actively transmitted quantum states of light, such as N00N and MM' states. Thus for the high-loss condition, the optimal strategy is to transmit coherent state of light, which can only provide sensitivity at the shot-noise limit but suffer no worse loss than the linear Beer's law for classical radar attenuation. In this paper, the target detection theory of quantum interferometric radar in the presence of photon loss is thoroughly investigated with the model of Mach-Zehnder interferometer, and the dynamic evolution of the quantum light field in the detecting process is also investigated. We utilize the parity operator to detect the return signal of quantum interferometric radar with coherent-state source. Then we compare the detection result of quantum radar with that of classical radar, which proves that the quantum radar scheme that employs coherent radiation sources and parity operator detection can provide an N-fold super-resolution, which is much below the Rayleigh diffraction limit; besides, the sensitivity of this scheme can also achieve the shot-noise-limit. Also, we analyze the effect of atmospheric attenuation on the performance of quantum radar, and find that the sensitivity is seriously influenced by atmospheric attenuation:only when the reference beam and the detection beam have the same transmissivity, will the sensitivity increase monotonically with increasing the photon number per pulse N, otherwise it first increases and then decreases with increasing N. Further, the sensivity is directly proportional to 1/N for the first case. In conclusion, we investigate the effects of atmospheric absorption on the resolution and sensitivity of quantum radar, and find that one can overcome the harmful effects of atmospheric attenuation by adjusting the transmissivity of reference beam to the atmospheric transmittance.
      通信作者: 任益充, rych@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11574295)和光电对抗测试评估技术重点实验室开放课题(批准号:GKCP2016001)资助的课题.
      Corresponding author: Ren Yi-Chong, rych@aiofm.ac.cn
    • Funds: Project supported by the National Science Foundation of China (Grant No.11574295) and the Key Laboratory of ElectroOptical Countermeasures Test and Evaluation Technology,China (Grant No.GKCP2016001).
    [1]

    Xiao H T, Liu K, Fan H Q 2014 J. Nat. Univ. Def. Technol. 36 140 (in Chinese) [肖怀铁, 刘康, 范红旗 2014 国防科技大学学报 36 140]

    [2]

    Xu S L, Hu Y H, Zhao N X, Wang Y Y, Li L, Guo L R 2015 Acta Phys. Sin. 64 154203 (in Chinese) [徐世龙, 胡以华, 赵楠翔, 王阳阳, 李乐, 郭力仁 2015 64 154203]

    [3]

    Jiang T, Sun J 2014 J. CAEIT 9 10 (in Chinese) [江涛, 孙俊 2014 中国电子科学研究院学报 9 10]

    [4]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [5]

    Gao Y, Anisimov P M, Wildfeuer C F, Luine J, Lee H, Dowling J P 2010 J. Opt. Soc. Am. B 27 170

    [6]

    Lanzagorta M 2010 Proc. SPIE 7727 77270K

    [7]

    Bakut P A 1967 Radio. Eng. Electron. Phys. 12 1

    [8]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) p95

    [9]

    Jehle R E, Hudson D F 1992 US Patent 5 095 312 [1992-3-10]

    [10]

    Kumar P, Grigoryan V, Vasilyev M 2007 Noise-Free Amplification: Towards Quantum Laser Radar (Snowmass: 14th Coherent Laser Radar Conference) p9

    [11]

    Wasilousky P A, Smith K H, Glasser R, Burdge G L, Burberry L, Deibner B, Silver M, Peach R C, Visone C, Kumer P, Lim O, Alon G, Chen C H, Bhagwat A R, Manurkar P, Vasilyev M, Annamalai M, Stelmakh N, Dutton Z, Guha S, Chen J, Silva M, Kelly W, Shapiro J F, Nair R, Yen B J, Wong F N C 2011 Proc. SPIE 8163 816305

    [12]

    Lloyd S 2008 Science 321 1463

    [13]

    Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirnadola S, Shapiro J H 2008 Phys. Rev. Lett. 101 253601

    [14]

    Guha S, Erkmen B I 2009 Phys. Rev. A 80 052310

    [15]

    Lopaeva E D, Berchera I R, Degiovanni I P, Olivares S, Brida G, Genovese M 2013 Phys. Rev. Lett. 110 153603

    [16]

    Dutton Z, Shapiro J H, Guha S 2010 J. Opt. Soc. Am. B 27 A63

    [17]

    Nair R, Yen B J, Shapiro J H, Chen J, Dutton Z, Guha S, Silva M P 2011 Proc. SPIE 8163 816310

    [18]

    Ekert A K, Rarity J G, Tapster P R, Palam G M 1992 Phys. Rev. Lett. 69 1293

    [19]

    Allen E H, Karageorgis M 2008 US Patent 7375802 B2

    [20]

    Smith J F 2010 Proc. SPIE 7702 p131

    [21]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [22]

    Breuer H P, Francesco P 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) pp161, 162

    [23]

    Ren Y C, Fan H Y 2016 Acta Phys. Sin. 65 030301 (in Chinese) [任益充, 范洪义 2016 65 030301]

    [24]

    Howard C 1999 Statistical Methods in Quantum Optics 1: Master Equation and F-P Equation (Berlin Heidelberg: Springer-Verlag Press) p9

    [25]

    Fan H Y, Hu L Y 2010 The Thermal Entanglement Entangled-State Representation of Open Quantum System (Shanghai: Shanghai Jiao Tong University Press) p91 (in Chinese) [范洪义, 胡利云 2010 开放量子系统退相干的纠缠态表象论(上海: 上海交通大学出版社) 第91页]

    [26]

    Kok P, Braunstein S L, Dowling J P 2004 J. Opt. B 6 S811

    [27]

    Kok P, Boto A N, Abarms D S, Williams C P, Braunstein S L, Dowling J P 2001 Phys. Rev. A 63 063407

    [28]

    Knysh S, Smelyanskil V N, Durkin G A 2011 Phys. Rev. A 83 021804

    [29]

    Lee T W, Huver S D, Lee H, Kaplan L, McCracken S B, Min C, Uskov D B, Wildfeuer C F, Veronis G, Dowling J P 2009 Phys. Rev. A 80 063803

    [30]

    Resch K J, Pregnell K L, Prevedel R, Gilchrist A, Pryde G J, O'Brien J L, White A G 2007 Phys. Rev. Lett. 98 223601

    [31]

    Huver S D, Wildfeuer C F, Dowling J P 2008 Phys. Rev. A 78 063828

    [32]

    Wang Q, Hao L L, Zhang Y, Xu L, Yang C H, Yang X, Zhao Y 2016 Opt. Express 24 5045

    [33]

    Jiang K, Lee H, Gerry C C, Dowling J P 2013 J. Appl. Phys. 114 193102

    [34]

    Fan H Y 1992 Representation and Transformation Theory in Quantum Mechanics (Shanghai: Shanghai Scientific and Technical Publishers) p44 (in Chinese) [范洪义 1992 量子力学表象与变换论(上海: 上海科学技术出版社) 第44页]

    [35]

    Distante E, Jezek M, Andersen U L 2013 Phys. Rev. Lett. 111 033603

    [36]

    Feng X M, Jin G Y, Yang W 2014 Phys. Rev. A 90 013807

  • [1]

    Xiao H T, Liu K, Fan H Q 2014 J. Nat. Univ. Def. Technol. 36 140 (in Chinese) [肖怀铁, 刘康, 范红旗 2014 国防科技大学学报 36 140]

    [2]

    Xu S L, Hu Y H, Zhao N X, Wang Y Y, Li L, Guo L R 2015 Acta Phys. Sin. 64 154203 (in Chinese) [徐世龙, 胡以华, 赵楠翔, 王阳阳, 李乐, 郭力仁 2015 64 154203]

    [3]

    Jiang T, Sun J 2014 J. CAEIT 9 10 (in Chinese) [江涛, 孙俊 2014 中国电子科学研究院学报 9 10]

    [4]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [5]

    Gao Y, Anisimov P M, Wildfeuer C F, Luine J, Lee H, Dowling J P 2010 J. Opt. Soc. Am. B 27 170

    [6]

    Lanzagorta M 2010 Proc. SPIE 7727 77270K

    [7]

    Bakut P A 1967 Radio. Eng. Electron. Phys. 12 1

    [8]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) p95

    [9]

    Jehle R E, Hudson D F 1992 US Patent 5 095 312 [1992-3-10]

    [10]

    Kumar P, Grigoryan V, Vasilyev M 2007 Noise-Free Amplification: Towards Quantum Laser Radar (Snowmass: 14th Coherent Laser Radar Conference) p9

    [11]

    Wasilousky P A, Smith K H, Glasser R, Burdge G L, Burberry L, Deibner B, Silver M, Peach R C, Visone C, Kumer P, Lim O, Alon G, Chen C H, Bhagwat A R, Manurkar P, Vasilyev M, Annamalai M, Stelmakh N, Dutton Z, Guha S, Chen J, Silva M, Kelly W, Shapiro J F, Nair R, Yen B J, Wong F N C 2011 Proc. SPIE 8163 816305

    [12]

    Lloyd S 2008 Science 321 1463

    [13]

    Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirnadola S, Shapiro J H 2008 Phys. Rev. Lett. 101 253601

    [14]

    Guha S, Erkmen B I 2009 Phys. Rev. A 80 052310

    [15]

    Lopaeva E D, Berchera I R, Degiovanni I P, Olivares S, Brida G, Genovese M 2013 Phys. Rev. Lett. 110 153603

    [16]

    Dutton Z, Shapiro J H, Guha S 2010 J. Opt. Soc. Am. B 27 A63

    [17]

    Nair R, Yen B J, Shapiro J H, Chen J, Dutton Z, Guha S, Silva M P 2011 Proc. SPIE 8163 816310

    [18]

    Ekert A K, Rarity J G, Tapster P R, Palam G M 1992 Phys. Rev. Lett. 69 1293

    [19]

    Allen E H, Karageorgis M 2008 US Patent 7375802 B2

    [20]

    Smith J F 2010 Proc. SPIE 7702 p131

    [21]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [22]

    Breuer H P, Francesco P 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) pp161, 162

    [23]

    Ren Y C, Fan H Y 2016 Acta Phys. Sin. 65 030301 (in Chinese) [任益充, 范洪义 2016 65 030301]

    [24]

    Howard C 1999 Statistical Methods in Quantum Optics 1: Master Equation and F-P Equation (Berlin Heidelberg: Springer-Verlag Press) p9

    [25]

    Fan H Y, Hu L Y 2010 The Thermal Entanglement Entangled-State Representation of Open Quantum System (Shanghai: Shanghai Jiao Tong University Press) p91 (in Chinese) [范洪义, 胡利云 2010 开放量子系统退相干的纠缠态表象论(上海: 上海交通大学出版社) 第91页]

    [26]

    Kok P, Braunstein S L, Dowling J P 2004 J. Opt. B 6 S811

    [27]

    Kok P, Boto A N, Abarms D S, Williams C P, Braunstein S L, Dowling J P 2001 Phys. Rev. A 63 063407

    [28]

    Knysh S, Smelyanskil V N, Durkin G A 2011 Phys. Rev. A 83 021804

    [29]

    Lee T W, Huver S D, Lee H, Kaplan L, McCracken S B, Min C, Uskov D B, Wildfeuer C F, Veronis G, Dowling J P 2009 Phys. Rev. A 80 063803

    [30]

    Resch K J, Pregnell K L, Prevedel R, Gilchrist A, Pryde G J, O'Brien J L, White A G 2007 Phys. Rev. Lett. 98 223601

    [31]

    Huver S D, Wildfeuer C F, Dowling J P 2008 Phys. Rev. A 78 063828

    [32]

    Wang Q, Hao L L, Zhang Y, Xu L, Yang C H, Yang X, Zhao Y 2016 Opt. Express 24 5045

    [33]

    Jiang K, Lee H, Gerry C C, Dowling J P 2013 J. Appl. Phys. 114 193102

    [34]

    Fan H Y 1992 Representation and Transformation Theory in Quantum Mechanics (Shanghai: Shanghai Scientific and Technical Publishers) p44 (in Chinese) [范洪义 1992 量子力学表象与变换论(上海: 上海科学技术出版社) 第44页]

    [35]

    Distante E, Jezek M, Andersen U L 2013 Phys. Rev. Lett. 111 033603

    [36]

    Feng X M, Jin G Y, Yang W 2014 Phys. Rev. A 90 013807

  • [1] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像: 散射光场偏振特性的复用技术.  , 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] 隋怡晖, 郭星奕, 郁钧瑾, Alexander A. Solovev, 他得安, 许凯亮. 生成对抗网络加速超分辨率超声定位显微成像方法研究.  , 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [3] 郁钧瑾, 郭星奕, 隋怡晖, 宋剑平, 他得安, 梅永丰, 许凯亮. 超分辨率超快超声脊髓微血管成像方法.  , 2022, 71(17): 174302. doi: 10.7498/aps.71.20220629
    [4] 曾祥昱, 王薇, 刘诚, 单昌功, 谢宇, 胡启后, 孙友文, PolyakovAlexander Viktorovich. 利用地基高分辨率傅里叶变换红外光谱技术探测大气氟氯烃气体CCl2F2的时空变化特征.  , 2021, 70(20): 200201. doi: 10.7498/aps.70.20210640
    [5] 任益充, 王书, 饶瑞中, 苗锡奎. 大气闪烁对纠缠相干态量子干涉雷达影响机理.  , 2018, 67(14): 140301. doi: 10.7498/aps.67.20172401
    [6] 狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒. 高光谱分辨率激光雷达鉴频器的设计与分析.  , 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [7] 龚志双, 王秉中, 王任, 臧锐, 王晓华. 基于光栅结构的远场时间反演亚波长源成像.  , 2017, 66(4): 044101. doi: 10.7498/aps.66.044101
    [8] 皮少华, 王冰洁, 赵栋, 贾波. 分布式光纤Sagnac干涉仪中基于倒谱的多分辨率入侵定位算法.  , 2016, 65(4): 044210. doi: 10.7498/aps.65.044210
    [9] 田园, 孙友文, 谢品华, 刘诚, 刘文清, 刘建国, 李昂, 胡仁志, 王薇, 曾议. 地基高分辨率傅里叶变换红外光谱反演环境大气中的CH4浓度变化.  , 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [10] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究.  , 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [11] 何林阳, 刘晶红, 李刚. 基于多相组重建的航空图像超分辨率算法.  , 2015, 64(11): 114208. doi: 10.7498/aps.64.114208
    [12] 梁美彦, 张存林. 相位补偿算法对提高太赫兹雷达距离像分辨率的研究.  , 2014, 63(14): 148701. doi: 10.7498/aps.63.148701
    [13] 邓承志, 田伟, 陈盼, 汪胜前, 朱华生, 胡赛凤. 基于局部约束群稀疏的红外图像超分辨率重建.  , 2014, 63(4): 044202. doi: 10.7498/aps.63.044202
    [14] 李杰, 朱京平, 张云尧, 刘宏, 侯洵. 光谱分辨率可调的新型干涉成像光谱技术研究.  , 2013, 62(2): 024205. doi: 10.7498/aps.62.024205
    [15] 梁木生, 王秉中, 章志敏, 丁帅, 臧锐. 基于远场时间反演的亚波长天线阵列研究.  , 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [16] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法.  , 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [17] 陈英明, 王秉中, 葛广顶. 微波时间反演系统的空间超分辨率机理.  , 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [18] 孙增国, 韩崇昭. 基于拖尾分布的高分辨率合成孔径雷达图像建模.  , 2010, 59(2): 998-1008. doi: 10.7498/aps.59.998
    [19] 葛广顶, 王秉中, 黄海燕, 郑罡. 时间反演电磁波超分辨率特性.  , 2009, 58(12): 8249-8253. doi: 10.7498/aps.58.8249
    [20] 张海涛, 巩马理, 赵达尊, 闫平, 崔瑞祯, 贾维溥. 实现超分辨率的微变焦法.  , 2001, 50(8): 1486-1491. doi: 10.7498/aps.50.1486
计量
  • 文章访问数:  7430
  • PDF下载量:  279
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-10
  • 修回日期:  2017-05-03
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map