搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分布式光纤Sagnac干涉仪中基于倒谱的多分辨率入侵定位算法

皮少华 王冰洁 赵栋 贾波

引用本文:
Citation:

分布式光纤Sagnac干涉仪中基于倒谱的多分辨率入侵定位算法

皮少华, 王冰洁, 赵栋, 贾波

Multi-resolution intrusion localization algorithm through cepstrum in distributed fiber optic Sagnac interferometer

Pi Shao-Hua, Wang Bing-Jie, Zhao Dong, Jia Bo
PDF
导出引用
  • 基于Sagnac结构的分布式光纤干涉仪具有灵敏度高和动态范围大等特点, 特别适合监测入侵信号, 并确定其发生位置. 不同于现有的时域自相关及频域陷波点定位方法, 本文提出将两相干光束相位差信号变换到倒谱域, 通过倒谱系数峰来方便准确地确定入侵位置. 此外, 为克服倒谱定位中降采样带来的分辨率粗糙问题, 提出了多分辨率定位综合的改进方法. 通过改变降采样因子和利用高阶倒谱峰两种措施对同一入侵信号得到一系列定位值, 并对所有定位值取平均作为入侵信号的最终定位值. 实验首先在距离传感光缆尾端40.498 km处制造3个入侵信号. 采用本文提出的倒谱方法对该入侵得到84个定位值, 综合后的定位误差分别只有9 m, 17 m 和 11 m, 显示了对入侵信号定位的准确性. 之后对不同位置的入侵信号进行定位, 7次实验的定位误差的标准差达到12 m, 而相同情况下的自相关方法和陷波点方法的定位误差标准差分别为695 m和118 m. 此外, 这种方法还具有操作简单、易于自动测量等特点, 有望在Sagnac干涉传感系统中发挥重要作用.
    Distributed fiber optic sensors are studied extensively, for monitoring abnormal events in continuous space, due to the advantages of immunity to electrical interference, non-conductivity and light weight. Moreover, the position of abnormal events, such as intrusions, could be determined directly without additional measurements. Among the various techniques, Sagnac interferometers prove to be promising for providing high sensitivity and large dynamic range in detecting intrusions. Two interference light beams are used which are naturally of equal optical path length in static status. When an intrusion occurs along the sensing fiber, the two light beams arrive at the intrusion position in different time and thus cause different phase changes induced by the intrusion. Analysis of the phase difference signal can predict the intrusion position, as well as the existence of the intrusion. As a Faraday rotator mirror (FRM) connected in the far-end of sensing fiber, both beams travel twice to the intrusion position after being reflected by the FRM. The propagation time interval T between the two interactions corresponds to the distance between the intrusion position and the far-end of sensing fiber Lx, which is further extracted as the localization of intrusion. Previously, the auto-correlation algorithm deals with the phase difference signal in the time domain and the null-frequency algorithm is used in frequency domain to calculate the distance. However the poor localization performance usually can not meet the requirement in high-quality monitoring applications. To determine the position of an intrusion effectively and accurately, the localization algorithm which deals with the phase difference signal in cepstrum domain is proposed in this article. Inspired by the research on the pitch examination we first introduce the algorithm for intrusion localization. Through theoretical analysis, the phase difference signal can be regarded as the convolution of the original waveform of intrusion and the T-related transform function. By applying the fast Fourier transform to the logarithmic spectrum, the phase difference signal is changed into the cepstrum domain, where the original waveform of intrusion and the transform function behave differently and are separated. The propagation time interval T, as well as the distance Lx, can be directly acquired from the peak produced by the transform function. In addition, to overcome the roughness in localization resolution brought by down-sampling of the phase difference signal, the decimator factor is scanned from 30 to 50 for multi-resolution localization at an original sampling rate 4 million/s-1. Besides the basic peak, high order peaks also emerge in the cepstrum in high signal-noise-ratio condition, which can also be used for localization. Since the localizations from different decimator factor and different peaks spread around the actual distance, an average of all reasonable localizations is calculated as the ultimate localization result for the intrusion. Firstly in experiments, intrusions occurring at a position 40.498 km are produced for the verification of the algorithm. The localizations are 40.489, 40.515 and 40.487 km, with localization errors as small as 9, 17 and 11 m respectively. Intrusions at different positions are tested and also correctly localized. For comparison, the standard deviations of localization error are respectively 695 m and 118 m for the auto-correlation algorithm and the null frequency algorithm, which are 58 times and 10 times of the result 12 m, which is obtained by the proposed cepstrum algorithm. The performance suggests promise to achieve better localization in practical applications.
      通信作者: 赵栋, zhaodongfudan@163.com
    • 基金项目: 国家科技支撑计划(批准号: 2013BAK02B03)、国家自然科学基金(批准号: 61107077)、国家自然科学基金科学仪器基础研究专款(批准号: 2014YQ090709)和上海市科委科技基金(批准号: 14DZ2281200, 14511101800)资助的课题.
      Corresponding author: Zhao Dong, zhaodongfudan@163.com
    • Funds: Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2013BAK02B03), the National Natural Science Foundation of China (Grant No. 61107077), the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China (Grant No. 2014YQ090709), and the Shanghai Committee of Science and Technology, China (Grant Nos. 14DZ2281200, 14511101800).
    [1]

    Cao Y, Pei Y W, Tong Z R 2014 Acta Phys. Sin. 63 024206 (in Chinese) [曹晔, 裴庸惟, 童峥嵘 2014 63 024206]

    [2]

    Leung C K, Wan K T, Inaudi D, Bao X Y, Habel W, Zhou Z 2015 Mater. Struct. 48 871

    [3]

    Jiang Z X, Cui B T 2015 Chin. Phys. B 24 020702

    [4]

    Zhou D P, Qin Z G, Li W H, Chen L, Bao X Y 2012 Opt. Express 20 13138

    [5]

    Xu Q, Xu H Y, Song Y H, Xiao Q 2014 Chin. J. Sci. Instrum. 35 216 (in Chinese) [徐锲, 许海燕, 宋耀华, 肖倩 2014 仪器仪表学报 35 2161]

    [6]

    Zhang J, Hoffman A, Kane A, Lewis J 2014 Proceedings of the 10th International Pipeline Conference Calgary, Alberta, Canada, September 29-October 3, 2014 p33619

    [7]

    Zubia J, Casado L, Aldabaldetreku G, Montero A, Zubia E, Durana G 2013 Sensors 13 13584

    [8]

    Juarez J C, Maier E W, Choi K N, Taylor H F 2005 J. Lightwave Technol. 23 2081

    [9]

    Bian Z Y, Liang R S, Zhang Y J, Yi L X, Lai G, Zhao R T 2015 Chin. Phys. B 24 107801

    [10]

    Karimov K S, Sulaiman K, Ahmad Z, Akhmedov K M, Mateen A 2015 Chin. Phys. B 24 018801

    [11]

    Maki M C, Weese J K 2004 IEEE Aero. El. Sys. Mag. 19 8

    [12]

    Wu H J, Li S S, Lu X L, Wu Y, Rao Y J 2012 Proceedings of SPIE 8351, 3th Asia Pacific Optical Sensors Conference Sydney, Australia January 31, 2012 p835134

    [13]

    Li K Y, Zhao X Q, Sun X H, Wan S R 2015 Acta Phys. Sin. 64 054304 (in Chinese) [李凯彦, 赵兴群, 孙小菡, 万遂人 2015 64 054304]

    [14]

    Wang B J, Pi S H, Sun Q, Jia B 2015 Opt. Eng. 54 055104

    [15]

    Hong X, Wu J, Zuo C, Liu F, Guo H, Xu K 2011 Appl. Opt. 50 4333

    [16]

    Dong Y, Zhang H, Chen L, Bao X Y 2012 Appl. Opt. 51 1229

    [17]

    Belal M, Newson T P 2011 Opt. Lett. 36 4728

    [18]

    Culshaw B, Kersey A 2008 J. Lightwave Technol. 26 1064

    [19]

    Zhang Z, Bao X Y 2008 Opt. Express 16 10240

    [20]

    Bao X Y, Chen L 2012 Sensors 12 8601

    [21]

    Ma H Q, Zhao J L, Wu L A 2009 Chin. Phys. B 18 2801

    [22]

    Hoffman P R, Kuzyk M G 2004 J. Lightwave Technol. 22 494

    [23]

    Bian P, Wu Y, Jia B, Xiao Q 2012 Chin. J. Sci. Instrum. 33 2870 (in Chinese) [卞庞, 吴媛, 贾波, 肖倩 2012 仪器仪表学报 33 2870]

    [24]

    Chen W, Meng Z, Zhou H J, Luo H 2012 Chin. Phys. B 21 034212

    [25]

    Li L C, Li X, Xie Z H, Liu D M 2012 Opt. Express 20 11109

    [26]

    Hao Y Q, Ye Q, Pan Z Q, Cai H W, Qu R H 2013 Chin. Phys. B 22 074214

    [27]

    Wu Y, Bian P, Jia B, Xiao Q 2014 J. Lightwave Technol. 32 1892

    [28]

    Ruan J, Zhang W G, Zhang H, Geng P C, Bai Z Y 2012 Chin. Phys. B 22 064216

    [29]

    Zhen S L, Chen J, Li H, Wang X G, Zhang B, Yu B L 2015 IEEE Photon. Tech. Lett. 27 895

    [30]

    Hong G W, Jia B, Tang H 2007 J. Lightwave Technol. 25 3057

    [31]

    Pi S H, Wang B J, Jia B, Sun Q, Xiao Q, Zhao D 2015 Opt. Eng. 54 085105

    [32]

    Xu H Y, Xu Q, Xiao Q, Jia B 2010 Acta Opt. Sin. 30 1603 (in Chinese) [许海燕, 徐锲, 肖倩, 贾波2010 光学学报 30 1603]

    [33]

    Wu Y, Bian P, Jia B, Xiao Q 2014 J. Lightwave Technol. 32 1032

    [34]

    Bian P, Wu Y, Jia B, Xiao Q, Xu Q, Wu H Y 2014 Opt. Eng. 53 044111

    [35]

    Hess W 2012 Pitch Determination of Speech Signals: Algorithms and Devices (Berlin: Springer Science Business Media) p399

    [36]

    Oppenheim A V, Schafer R W 2004 IEEE Signal Proc. Mag. 21 95

    [37]

    Borghesania P, Pennacchia P, Randallb R B, Sawalhib N, Riccia R 2013 Mech. Syst. Signal Pr. 36 370

    [38]

    Wang Y, Zou N, Fu J, Liang G L 2014 Acta Phys. Sin. 63 034302 (in Chinese) [王燕, 邹男, 付进, 梁国龙 2014 63 034302]

    [39]

    Wu H Y, Jia B, Ye J, Wang C 2007 Trans. Micro. Technol. 26 45 (in Chinese) [吴红艳, 贾波, 叶佳, 王超2007传感器与微系统 26 45]

  • [1]

    Cao Y, Pei Y W, Tong Z R 2014 Acta Phys. Sin. 63 024206 (in Chinese) [曹晔, 裴庸惟, 童峥嵘 2014 63 024206]

    [2]

    Leung C K, Wan K T, Inaudi D, Bao X Y, Habel W, Zhou Z 2015 Mater. Struct. 48 871

    [3]

    Jiang Z X, Cui B T 2015 Chin. Phys. B 24 020702

    [4]

    Zhou D P, Qin Z G, Li W H, Chen L, Bao X Y 2012 Opt. Express 20 13138

    [5]

    Xu Q, Xu H Y, Song Y H, Xiao Q 2014 Chin. J. Sci. Instrum. 35 216 (in Chinese) [徐锲, 许海燕, 宋耀华, 肖倩 2014 仪器仪表学报 35 2161]

    [6]

    Zhang J, Hoffman A, Kane A, Lewis J 2014 Proceedings of the 10th International Pipeline Conference Calgary, Alberta, Canada, September 29-October 3, 2014 p33619

    [7]

    Zubia J, Casado L, Aldabaldetreku G, Montero A, Zubia E, Durana G 2013 Sensors 13 13584

    [8]

    Juarez J C, Maier E W, Choi K N, Taylor H F 2005 J. Lightwave Technol. 23 2081

    [9]

    Bian Z Y, Liang R S, Zhang Y J, Yi L X, Lai G, Zhao R T 2015 Chin. Phys. B 24 107801

    [10]

    Karimov K S, Sulaiman K, Ahmad Z, Akhmedov K M, Mateen A 2015 Chin. Phys. B 24 018801

    [11]

    Maki M C, Weese J K 2004 IEEE Aero. El. Sys. Mag. 19 8

    [12]

    Wu H J, Li S S, Lu X L, Wu Y, Rao Y J 2012 Proceedings of SPIE 8351, 3th Asia Pacific Optical Sensors Conference Sydney, Australia January 31, 2012 p835134

    [13]

    Li K Y, Zhao X Q, Sun X H, Wan S R 2015 Acta Phys. Sin. 64 054304 (in Chinese) [李凯彦, 赵兴群, 孙小菡, 万遂人 2015 64 054304]

    [14]

    Wang B J, Pi S H, Sun Q, Jia B 2015 Opt. Eng. 54 055104

    [15]

    Hong X, Wu J, Zuo C, Liu F, Guo H, Xu K 2011 Appl. Opt. 50 4333

    [16]

    Dong Y, Zhang H, Chen L, Bao X Y 2012 Appl. Opt. 51 1229

    [17]

    Belal M, Newson T P 2011 Opt. Lett. 36 4728

    [18]

    Culshaw B, Kersey A 2008 J. Lightwave Technol. 26 1064

    [19]

    Zhang Z, Bao X Y 2008 Opt. Express 16 10240

    [20]

    Bao X Y, Chen L 2012 Sensors 12 8601

    [21]

    Ma H Q, Zhao J L, Wu L A 2009 Chin. Phys. B 18 2801

    [22]

    Hoffman P R, Kuzyk M G 2004 J. Lightwave Technol. 22 494

    [23]

    Bian P, Wu Y, Jia B, Xiao Q 2012 Chin. J. Sci. Instrum. 33 2870 (in Chinese) [卞庞, 吴媛, 贾波, 肖倩 2012 仪器仪表学报 33 2870]

    [24]

    Chen W, Meng Z, Zhou H J, Luo H 2012 Chin. Phys. B 21 034212

    [25]

    Li L C, Li X, Xie Z H, Liu D M 2012 Opt. Express 20 11109

    [26]

    Hao Y Q, Ye Q, Pan Z Q, Cai H W, Qu R H 2013 Chin. Phys. B 22 074214

    [27]

    Wu Y, Bian P, Jia B, Xiao Q 2014 J. Lightwave Technol. 32 1892

    [28]

    Ruan J, Zhang W G, Zhang H, Geng P C, Bai Z Y 2012 Chin. Phys. B 22 064216

    [29]

    Zhen S L, Chen J, Li H, Wang X G, Zhang B, Yu B L 2015 IEEE Photon. Tech. Lett. 27 895

    [30]

    Hong G W, Jia B, Tang H 2007 J. Lightwave Technol. 25 3057

    [31]

    Pi S H, Wang B J, Jia B, Sun Q, Xiao Q, Zhao D 2015 Opt. Eng. 54 085105

    [32]

    Xu H Y, Xu Q, Xiao Q, Jia B 2010 Acta Opt. Sin. 30 1603 (in Chinese) [许海燕, 徐锲, 肖倩, 贾波2010 光学学报 30 1603]

    [33]

    Wu Y, Bian P, Jia B, Xiao Q 2014 J. Lightwave Technol. 32 1032

    [34]

    Bian P, Wu Y, Jia B, Xiao Q, Xu Q, Wu H Y 2014 Opt. Eng. 53 044111

    [35]

    Hess W 2012 Pitch Determination of Speech Signals: Algorithms and Devices (Berlin: Springer Science Business Media) p399

    [36]

    Oppenheim A V, Schafer R W 2004 IEEE Signal Proc. Mag. 21 95

    [37]

    Borghesania P, Pennacchia P, Randallb R B, Sawalhib N, Riccia R 2013 Mech. Syst. Signal Pr. 36 370

    [38]

    Wang Y, Zou N, Fu J, Liang G L 2014 Acta Phys. Sin. 63 034302 (in Chinese) [王燕, 邹男, 付进, 梁国龙 2014 63 034302]

    [39]

    Wu H Y, Jia B, Ye J, Wang C 2007 Trans. Micro. Technol. 26 45 (in Chinese) [吴红艳, 贾波, 叶佳, 王超2007传感器与微系统 26 45]

  • [1] 隋怡晖, 郭星奕, 郁钧瑾, Alexander A. Solovev, 他得安, 许凯亮. 生成对抗网络加速超分辨率超声定位显微成像方法研究.  , 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [2] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究.  , 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [3] 贺寅竹, 赵世杰, 尉昊赟, 李岩. 跨尺度亚纳米分辨的可溯源外差干涉仪.  , 2017, 66(6): 060601. doi: 10.7498/aps.66.060601
    [4] 李金洋, 逯丹凤, 祁志美. 集成光波导静态傅里叶变换微光谱仪分辨率倍增方法.  , 2015, 64(11): 114207. doi: 10.7498/aps.64.114207
    [5] 何林阳, 刘晶红, 李刚. 基于多相组重建的航空图像超分辨率算法.  , 2015, 64(11): 114208. doi: 10.7498/aps.64.114208
    [6] 付栋之, 贾俊亮, 周英男, 陈东旭, 高宏, 李福利, 张沛. 利用Sagnac干涉仪实现光子轨道角动量分束器.  , 2015, 64(13): 130704. doi: 10.7498/aps.64.130704
    [7] 梁美彦, 张存林. 相位补偿算法对提高太赫兹雷达距离像分辨率的研究.  , 2014, 63(14): 148701. doi: 10.7498/aps.63.148701
    [8] 范伟, 谷渝秋, 朱斌, 税敏, 单连强, 杜赛, 辛建婷, 赵宗清, 周维民, 曹磊峰, 张学如, 王玉晓. 一种超快时间分辨速度干涉仪的设计和理论研究.  , 2014, 63(6): 060703. doi: 10.7498/aps.63.060703
    [9] 范虹, 朱艳春, 王芳梅, 张旭梅. 多分辨率水平集算法的乳腺MR图像分割.  , 2014, 63(11): 118701. doi: 10.7498/aps.63.118701
    [10] 王燕, 邹男, 付进, 梁国龙. 基于倒谱分析的单水听器目标运动参数估计.  , 2014, 63(3): 034302. doi: 10.7498/aps.63.034302
    [11] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法.  , 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [12] 刘亚文, 陈亦望, 徐鑫, 刘宗信. 基于辅助差分方程的完全匹配层在时域多分辨率分析算法中的应用与性能分析.  , 2013, 62(3): 034101. doi: 10.7498/aps.62.034101
    [13] 娄淑琴, 王鑫, 鹿文亮. 一种新型侧漏型光子晶体光纤的研制及其传输特性研究.  , 2013, 62(8): 084216. doi: 10.7498/aps.62.084216
    [14] 娄淑琴, 鹿文亮, 王鑫. 同时测量扭转角度和扭转方向的侧漏光子晶体光纤扭转传感器.  , 2013, 62(9): 090701. doi: 10.7498/aps.62.090701
    [15] 马海强, 李林霞, 王素梅, 吴张斌, 焦荣珍. 一种全光纤型观测光波粒二象性的方法.  , 2010, 59(1): 75-79. doi: 10.7498/aps.59.75
    [16] 吴 光, 周春源, 曾和平. 光纤Sagnac干涉仪中单光子干涉及路由控制.  , 2004, 53(3): 698-702. doi: 10.7498/aps.53.698
    [17] 舒学文, 黄德修, 邓桂华, 施 伟, 江 山. 基于单个光纤光栅的Sagnac干涉仪的理论与实验研究.  , 2000, 49(9): 1731-1735. doi: 10.7498/aps.49.1731
    [18] 朱德彰, 潘浩昌, 曹建清, 朱福英, 陈国明, 陈国樑, 杨絜, 邹世昌. 用高分辨率沟道背散射谱仪研究硅的低能氮离子氮化.  , 1990, 39(8): 96-99. doi: 10.7498/aps.39.96
    [19] 陆坤权, 常龙存, 赵雅琴. X射线连续谱晶体单色器的分辨率.  , 1983, 32(12): 1505-1514. doi: 10.7498/aps.32.1505
    [20] 倪育才, 王邦益. 用改进的瑞利干涉仪精确测量空气折射率.  , 1977, 26(1): 90-92. doi: 10.7498/aps.26.90
计量
  • 文章访问数:  6264
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-29
  • 修回日期:  2015-10-27
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map