搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有面内四极磁场的旋转玻色-爱因斯坦凝聚体的基态结构研究

刘静思 李吉 刘伍明

引用本文:
Citation:

具有面内四极磁场的旋转玻色-爱因斯坦凝聚体的基态结构研究

刘静思, 李吉, 刘伍明

Ground state of a rotating Bose-Einstein condensate with in-plane quadrupole field

Liu Jing-Si, Li Ji, Liu Wu-Ming
PDF
导出引用
  • 通过虚时演化方法研究了具有面内四极磁场的旋转玻色-爱因斯坦凝聚体的基态结构.结果发现:面内四极磁场和旋转双重作用可导致中央Mermin-Ho涡旋的产生;随着磁场梯度增强,Mermin-Ho涡旋周围环绕的涡旋趋向对称化排布;在四极磁场下,密度相互作用和自旋交换相互作用作为体系的调控参数,可以控制Mermin-Ho涡旋周围的涡旋数目;该体系自旋结构中存在双曲型meron和half-skyrmion两种拓扑结构.
    Compared with the scalar Bose-Einstein condensate, the spinor Bose-Einstein condensate, in which internal degrees of freedom are essentially free, has aroused the great interest in the study of topological excitations. In particular, the spinor Bose-Einstein condensate with rotation provides a new opportunity for studying novel quantum states including a coreless vortex and vortex lattice. To date, in the presence of rotation, a great many of studies on the topological excitations have focused on the Bose-Einstein condensate system with the uniform Zeeman field or without external magnetic field. However, the ground state structure of a rotating Bose-Einstein condensate in the presence of in-plane gradient-magnetic-field remains an open question. In this work, by using the imaginary-time propagation method, we study the ground state structure of a rotating Bose-Einstein condensate with in-plane quadrupole field. We first examine the effect of in-plane quadrupole field on trapped spinor Bose-Einstein condensate. The numerical results show that Mermin-Ho vortex can be induced only by the cooperation between quadrupole field and rotation. When magnetic field gradient is increased, the vortices around Mermin-Ho vortex display the symmetrical arrangement. For an even larger magnetic field gradient strength, the system only presents the Mermin-Ho vortex because the in-plane quadrupole field can prevent the vortices around Mermin-Ho vortex from occurring. Next, we examine the effect of the rotation on trapped spinor Bose-Einstein condensate. A phase transition from a polar-core vortex to a Mermin-Ho vortex is found through applying a rotational potential, which is caused by the cooperation between the in-plane quadrupole field and the rotation. We further study the combined effects of spin exchange interaction and density-density interaction. The results confirm that in the presence of the quadrupole field both spin exchange interaction and density-density interaction, acting as controllable parameters, can control the number of the vortices around Mermin-Ho vortex. The corresponding number of the vortices shows step behavior with increasing the ratio between spin exchange interaction and density-density interaction, which behaves as hexagon, pentagon, square and triangle. It is found that two types of topology structures, i.e., the hyperbolic meron and half-skyrmion, can occur in the present system. These vortex structures can be realized via time-of-flight absorption imaging technique. Our results not only provide an opportunity to investigate the exotic vortex structures and the corresponding phase transitions in a controlled platform, but also lay the foundation for the study of topological defect subjected to gauge field and dipolar interaction in future.
      通信作者: 李吉, liji2015@iphy.ac.cn
    • 基金项目: 国家重点研发计划量子调控与量子信息重点专项(批准号:2016YFA0301500)和国家自然科学基金(批准号:11434015,KZ201610005011)资助的课题.
      Corresponding author: Li Ji, liji2015@iphy.ac.cn
    • Funds: Project supported by the NKRDP (Grant No.2016YFA0301500),and the National Natural Science Foundation of China (Grant Nos.1143401,KZ201610005011).
    [1]

    Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P, Ketterle W 1998 Nature 396 345

    [2]

    Ho T L 1998 Phys. Rev. Lett. 81 742

    [3]

    Görlitz A, Gustavson T L, Leanhardt A E, Löw R, Chikkatur A P, Gupta S, Inouye S, Pritchard D E, Ketterle W 2003 Phys. Rev. Lett. 90 090401

    [4]

    Klausen N N, Bohn J L, Greene C H 2001 Phys. Rev. A 64 053602

    [5]

    Isoshima T, Machida K, Ohmi T 2001 J. Phys. Soc. Jpn. 70 1604

    [6]

    Kasamatsu K, Tsubota M, Ueda M 2005 Int. J. Mod. Phys. B 19 1835

    [7]

    Tuchiya S, Kurihara S 2001 J. Phys. Soc. Jpn. 70 1182

    [8]

    Raman C, Abo-Shaeer J R, Vogels J M, Xu K, Ketterle W 2001 Phys. Rev. Lett. 87 210402

    [9]

    Williams R A, Al-Assam S, Foot C J 2010 Phys. Rev. Lett. 104 050404

    [10]

    Schweikhard V, Coddington I, Engels P, Tung S, Cornell E A 2004 Phys. Rev. Lett. 93 210403

    [11]

    Chevy F, Madison K W, Dalibard J 2000 Phys. Rev. Lett. 85 2223

    [12]

    Martikainen J P, Collin A, Suominen K A 2002 Phys. Rev. A 66 053604

    [13]

    Mizushima T, Kobayashi N, Machida K 2004 Phys. Rev. A 70 043613

    [14]

    Mizushima T, Machida K, Kita T 2002 Phys. Rev. Lett. 89 030401

    [15]

    Mizushima T, Machida K, Kita T 2002 Phys. Rev. A 66 053610

    [16]

    Anderson B M, Spielman I B, Juzeliūnas G 2013 Phys. Rev. Lett. 111 125301

    [17]

    Xu Z F, You L, Ueda M 2013 Phys. Rev. A 87 063634

    [18]

    Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B, Bloch I 2013 Phys. Rev. Lett. 111 185301

    [19]

    Kennedy J C, Siviloglou G A, Miyake H, Burton W C, Ketterle W 2013 Phys. Rev. Lett. 111 225301

    [20]

    Ray M W, Ruokokoski E, Kandel S, Möttönen M, Hall D S 2014 Nature 505 657

    [21]

    Ray M W, Ruokokoski E, Tiurev K, Möttönen M, Hall D S 2015 Science 348 544

    [22]

    Hall D S, Ray M W, Tiurev K, Ruokokoski E, Gheorghe A H, Möttönen M 2015 Nature Phys. 12 478

    [23]

    Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev. Lett. 101 010402

    [24]

    Bulgakov E N, Sadreev A F 2003 Phys. Rev. Lett. 90 200401

    [25]

    Lovegrove J, Borgh M O, Ruostekoski J 2012 Phys. Rev. A 86 013613

    [26]

    Pritchard D E 1983 Phys. Rev. Lett. 51 1336

    [27]

    Leanhardt A E, Shin Y, Kielpinski D, Pritchard D E, Ketterle W 2003 Phys. Rev. Lett. 90 140403

    [28]

    Leanhardt A E, Görlitz A, Chikkatur A P, Kielpinski D, Shin Y, Pritchard D E, Ketterle W 2002 Phys. Rev. Lett. 89 190403

    [29]

    Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 85 1191

    [30]

    Dalfovo F, Stringari S 1996 Phys. Rev. A 53 2477

    [31]

    Zhang X F, Dong R F, Liu T, Liu W M, Zhang S G 2012 Phys. Rev. A 86 063628

    [32]

    Bao W Z, Du Q 2004 SIAM J. Sci. Comput. 25 1674

    [33]

    Kasamatsu K, Tsubota M 2009 Phys. Rev. A 79 023606

    [34]

    Sadler L E, Higbie J M, Leslie S R, Vengalattore M, Stamper-Kurn D M 2006 Nature 443 312

    [35]

    Fetter A L 2009 Rev. Mod. Phys. 81 647

    [36]

    Su S W, Hsueh C H, Liu I K, Horng T L, Tsai Y C, Gou S C, Liu W M 2011 Phys. Rev. A 84 023601

    [37]

    Liu C F, Liu W M 2012 Phys. Rev. A 86 033602

    [38]

    Volovik G E 2003 The Universe in a Helium Droplet (Oxford:Oxford University Press)

    [39]

    Liu C F, Wan W J, Zhang G Y 2013 Acta Phys. Sin. 62 200306 (in Chinese)[刘超飞, 万文娟, 张赣源 2013 62 200306]

    [40]

    Song S W, Sun R, Zhao H, Wang X, Han B Z 2016 Chin. Phys. B 25 040305

    [41]

    Zhang X F, Zhang P, Chen G P, Dong B, Tan R B, Zhang S G 2015 Acta Phys. Sin. 64 060302 (in Chinese)[张晓斐, 张培, 陈光平, 董彪, 谭仁兵, 张首刚 2015 64 060302]

  • [1]

    Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P, Ketterle W 1998 Nature 396 345

    [2]

    Ho T L 1998 Phys. Rev. Lett. 81 742

    [3]

    Görlitz A, Gustavson T L, Leanhardt A E, Löw R, Chikkatur A P, Gupta S, Inouye S, Pritchard D E, Ketterle W 2003 Phys. Rev. Lett. 90 090401

    [4]

    Klausen N N, Bohn J L, Greene C H 2001 Phys. Rev. A 64 053602

    [5]

    Isoshima T, Machida K, Ohmi T 2001 J. Phys. Soc. Jpn. 70 1604

    [6]

    Kasamatsu K, Tsubota M, Ueda M 2005 Int. J. Mod. Phys. B 19 1835

    [7]

    Tuchiya S, Kurihara S 2001 J. Phys. Soc. Jpn. 70 1182

    [8]

    Raman C, Abo-Shaeer J R, Vogels J M, Xu K, Ketterle W 2001 Phys. Rev. Lett. 87 210402

    [9]

    Williams R A, Al-Assam S, Foot C J 2010 Phys. Rev. Lett. 104 050404

    [10]

    Schweikhard V, Coddington I, Engels P, Tung S, Cornell E A 2004 Phys. Rev. Lett. 93 210403

    [11]

    Chevy F, Madison K W, Dalibard J 2000 Phys. Rev. Lett. 85 2223

    [12]

    Martikainen J P, Collin A, Suominen K A 2002 Phys. Rev. A 66 053604

    [13]

    Mizushima T, Kobayashi N, Machida K 2004 Phys. Rev. A 70 043613

    [14]

    Mizushima T, Machida K, Kita T 2002 Phys. Rev. Lett. 89 030401

    [15]

    Mizushima T, Machida K, Kita T 2002 Phys. Rev. A 66 053610

    [16]

    Anderson B M, Spielman I B, Juzeliūnas G 2013 Phys. Rev. Lett. 111 125301

    [17]

    Xu Z F, You L, Ueda M 2013 Phys. Rev. A 87 063634

    [18]

    Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B, Bloch I 2013 Phys. Rev. Lett. 111 185301

    [19]

    Kennedy J C, Siviloglou G A, Miyake H, Burton W C, Ketterle W 2013 Phys. Rev. Lett. 111 225301

    [20]

    Ray M W, Ruokokoski E, Kandel S, Möttönen M, Hall D S 2014 Nature 505 657

    [21]

    Ray M W, Ruokokoski E, Tiurev K, Möttönen M, Hall D S 2015 Science 348 544

    [22]

    Hall D S, Ray M W, Tiurev K, Ruokokoski E, Gheorghe A H, Möttönen M 2015 Nature Phys. 12 478

    [23]

    Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev. Lett. 101 010402

    [24]

    Bulgakov E N, Sadreev A F 2003 Phys. Rev. Lett. 90 200401

    [25]

    Lovegrove J, Borgh M O, Ruostekoski J 2012 Phys. Rev. A 86 013613

    [26]

    Pritchard D E 1983 Phys. Rev. Lett. 51 1336

    [27]

    Leanhardt A E, Shin Y, Kielpinski D, Pritchard D E, Ketterle W 2003 Phys. Rev. Lett. 90 140403

    [28]

    Leanhardt A E, Görlitz A, Chikkatur A P, Kielpinski D, Shin Y, Pritchard D E, Ketterle W 2002 Phys. Rev. Lett. 89 190403

    [29]

    Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 85 1191

    [30]

    Dalfovo F, Stringari S 1996 Phys. Rev. A 53 2477

    [31]

    Zhang X F, Dong R F, Liu T, Liu W M, Zhang S G 2012 Phys. Rev. A 86 063628

    [32]

    Bao W Z, Du Q 2004 SIAM J. Sci. Comput. 25 1674

    [33]

    Kasamatsu K, Tsubota M 2009 Phys. Rev. A 79 023606

    [34]

    Sadler L E, Higbie J M, Leslie S R, Vengalattore M, Stamper-Kurn D M 2006 Nature 443 312

    [35]

    Fetter A L 2009 Rev. Mod. Phys. 81 647

    [36]

    Su S W, Hsueh C H, Liu I K, Horng T L, Tsai Y C, Gou S C, Liu W M 2011 Phys. Rev. A 84 023601

    [37]

    Liu C F, Liu W M 2012 Phys. Rev. A 86 033602

    [38]

    Volovik G E 2003 The Universe in a Helium Droplet (Oxford:Oxford University Press)

    [39]

    Liu C F, Wan W J, Zhang G Y 2013 Acta Phys. Sin. 62 200306 (in Chinese)[刘超飞, 万文娟, 张赣源 2013 62 200306]

    [40]

    Song S W, Sun R, Zhao H, Wang X, Han B Z 2016 Chin. Phys. B 25 040305

    [41]

    Zhang X F, Zhang P, Chen G P, Dong B, Tan R B, Zhang S G 2015 Acta Phys. Sin. 64 060302 (in Chinese)[张晓斐, 张培, 陈光平, 董彪, 谭仁兵, 张首刚 2015 64 060302]

  • [1] 袁家望, 陈立, 张云波. 自旋-轨道耦合玻色爱因斯坦凝聚中多能级绝热消除理论.  , 2023, 72(21): 216701. doi: 10.7498/aps.72.20231052
    [2] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质.  , 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [3] 焦宸, 简粤, 张爱霞, 薛具奎. 自旋-轨道耦合玻色-爱因斯坦凝聚体激发谱及其有效调控.  , 2023, 72(6): 060302. doi: 10.7498/aps.72.20222306
    [4] 王欢, 贺夏瑶, 李帅, 刘博. 非线性相互作用的自旋-轨道耦合玻色-爱因斯坦凝聚体的淬火动力学.  , 2023, 72(10): 100309. doi: 10.7498/aps.72.20222401
    [5] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学.  , 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [6] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性.  , 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [7] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态.  , 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [8] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响.  , 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [9] 李吉, 刘伍明. 梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究.  , 2018, 67(11): 110302. doi: 10.7498/aps.67.20180539
    [10] 赵文静, 文灵华. 半无限深势阱中自旋相关玻色-爱因斯坦凝聚体的量子反射与干涉.  , 2017, 66(23): 230301. doi: 10.7498/aps.66.230301
    [11] 何章明, 张志强. 玻色-爱因斯坦凝聚体中的双孤子相互作用操控.  , 2016, 65(11): 110502. doi: 10.7498/aps.65.110502
    [12] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构.  , 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [13] 李志, 曹辉. 自旋轨道耦合玻色-爱因斯坦凝聚体在尖端势垒散射中的Klein隧穿.  , 2014, 63(11): 110306. doi: 10.7498/aps.63.110306
    [14] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究.  , 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [15] 刘超飞, 万文娟, 张赣源. 自旋轨道耦合的23Na自旋-1玻色-爱因斯坦凝聚体中的涡旋斑图的研究.  , 2013, 62(20): 200306. doi: 10.7498/aps.62.200306
    [16] 严冬, 宋立军, 陈殿伟. 两分量玻色-爱因斯坦凝聚系统的自旋压缩.  , 2009, 58(6): 3679-3684. doi: 10.7498/aps.58.3679
    [17] 许小勇, 钱丽洁, 胡经国. 铁磁多层膜中的力致磁电阻效应.  , 2009, 58(3): 2023-2029. doi: 10.7498/aps.58.2023
    [18] 王冠芳, 刘 红. 扫描磁场中玻色-爱因斯坦凝聚体系的奇异自旋隧穿.  , 2008, 57(2): 667-673. doi: 10.7498/aps.57.667
    [19] 李菊萍, 谭 磊, 臧小飞, 杨 科. 偶极旋量玻色-爱因斯坦凝聚体在外场中的自旋混合动力学.  , 2008, 57(12): 7467-7476. doi: 10.7498/aps.57.7467
    [20] 於乾英, 张金仓, 贾蓉蓉, 敬 超, 曹世勋. 多自旋态离子Co替代诱导La2/3Ca1/3MnO3体系的输运反常.  , 2008, 57(1): 453-459. doi: 10.7498/aps.57.453
计量
  • 文章访问数:  6586
  • PDF下载量:  305
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-01
  • 修回日期:  2017-04-13
  • 刊出日期:  2017-07-05

/

返回文章
返回
Baidu
map