搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多空穴错位分布对石墨纳米带中热输运的影响

周欣 高仁斌 谭仕华 彭小芳 蒋湘涛 包本刚

引用本文:
Citation:

多空穴错位分布对石墨纳米带中热输运的影响

周欣, 高仁斌, 谭仕华, 彭小芳, 蒋湘涛, 包本刚

Influence of multi-cavity dislocation distribution on thermal conductance in graphene nanoribbons

Zhou Xin, Gao Ren-Bin, Tan Shi-Hua, Peng Xiao-Fang, Jiang Xiang-Tao, Bao Ben-Gang
PDF
导出引用
  • 利用非平衡格林函数方法研究了石墨纳米带中三空穴错位分布对热输运性质的影响.研究结果发现:三空穴竖直并排结构对低频声子的散射较小,导致低温区域三空穴竖直并排时热导最大,而在高频区域,三空穴竖直并排结构对高频声子的散射较大,导致较高温度区域三空穴竖直并排时热导最小;三空穴的相对错位分布仅能较大幅度地调节面内声学模高频声子的透射概率,而三空穴的相对错位分布能较大幅度地调节垂直振动膜高频声子和低频声子的透射概率,导致三空穴的相对错位分布不仅能大幅调节面内声学模和垂直振动模的高温热导,也能大幅调节垂直振动模的低温热导.研究结果阐明了空穴位置不同的石墨纳米带的热导特性,为设计基于石墨纳米带的热输运量子器件提供了有效的理论依据.
    Using non-equilibrium Green's function method and keeping the zigzag carbon chains unchanged, we investigate the transmission rate of acoustic phonon and the reduced thermal conductance in the graphene nanoribbons with three cavities. The results show that the reduced thermal conductance approaches to 32kB2 T/(3h) in the limit T0 K. Due to the fact that only long wavelength acoustic phonons with zero cutoff frequency are excited at such low temperatures, the scattering influence on the long wavelength acoustic phonons by the dislocation distribution of three cavities in the graphene nanoribbons can be ignored and these phonons can go through the scattering region perfectly. As the temperature goes up, the reduced thermal conductance decreases. This is because the high-frequency phonons are excited and these high-frequency phonons are scattered easily by the scattering structures. With the further rise of temperature, acoustic phonon modes with the cutoff frequency greater than zero are excited, which leads to a rapid increase of the reduced thermal conductance. This study shows that in higher frequency region, the transmission spectra display complex peak-dip structures, which results from the fact that in higher frequency region, more phonon modes are excited and scattered in the middle scattering region with three cavities, and the scattering phonons are coupled with the incident phonons. When the three cavities are aligned perpendicularly to the edge of the graphene nanoribbons, the scattering from low-frequency phonons by the scattering structures is smallest, which leads to the fact that the reduced thermal conductance is largest at low temperatures; however, at high temperatures, the reduced thermal conductance is smallest when the three cavities is aligned perpendicularly to the edge of the graphene nanoribbons. This is because the scattering from high-frequency phonons by the scattering structures is biggest. These results show that the acoustic phonon transport and the reduced thermal conductance are dependent on the relative position of the three cavities. In addition, the dislocation distribution of the three cavities can only modulate obviously the high-temperature thermal conductance of the in-plane modes (IPMs). This is because the change of the relative position of the quantum dots can only modulate greatly the high-frequency phonon transmission rate and less modulate the low-frequency phonon transmission rate of the IPMs. However, the dislocation distribution of the three cavities can adjust obviously not only the high-temperature thermal conductance of the flexural phonon modes (FPMs), but also the low-temperature thermal conductance of the FPMs. This is because the change of the relative position of the three cavities can modulate greatly phonon transmission rates of flexural phonon modes in the low-frequency and high-frequency regions. These results provide an effective theoretical basis for designing the thermal transport quantum devices based on graphene nanoribbons.
      通信作者: 彭小芳, xiaofangpeng11@163.com;xtjiang@csuft.edu.cn ; 蒋湘涛, xiaofangpeng11@163.com;xtjiang@csuft.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11247030,61272147,61602529)、湖南省自然科学基金(批准号:14JJ4054)、湖南省教育厅基金(批准号:12B136,12C0446)、中南林业科技大学人才引进计划(批准号:104-0160)和中南林业科技大学研究生科技创新基金(批准号:CX2016B26)资助的课题.
      Corresponding author: Peng Xiao-Fang, xiaofangpeng11@163.com;xtjiang@csuft.edu.cn ; Jiang Xiang-Tao, xiaofangpeng11@163.com;xtjiang@csuft.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11247030, 61272147, 61602529), the Hunan Provincial Natural Science Foundation, China (Grant No. 14JJ4054), the Research Foundation of Hunan Provincial Education Department, China (Grant Nos. 12B136, 12C0446), the Talent Introducing Foundation of Central South University of Forestry and Technology, China (Grant No. 104-0160), and the Scientific Innovation Fund for Graduate of Central South University of Forestry and Technology, China (Grant No. CX2016B26).
    [1]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [2]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese) [陈晓彬, 段文晖 2015 64 186302]

    [3]

    Zhai X C, Qi F H, Xu Y F, Zhou X F, Jin G J 2015 Prog. Phys. 35 1 (in Chinese) [翟学超, 戚凤华, 许亚芳, 周兴飞, 金国钧 2015 物理学进展 35 1]

    [4]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [5]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [6]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491

    [7]

    Balandin A A 2011 Nat. Mater. 10 569

    [8]

    Peng X F, Wang X J, Gong Z Q, Chen K Q 2011 Appl. Phys. Lett. 99 233105

    [9]

    Peng X F, Zhou X, Tan S H, Wang X J, Chen K Q 2017 Carbon 113 334

    [10]

    Tan S H, Tang L M, Xie Z X, Pan C N, Chen K Q 2013 Carbon 65 181

    [11]

    Chen X K, Xie Z X, Zhou W X, Tang L M, Chen K Q 2016 Appl. Phys. Lett. 109 023101

    [12]

    Chen K Q, Li W X, Duan W, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422

    [13]

    Peng X F, Chen K Q, Wan Q, Zou B S, Duan W 2010 Phys. Rev. B 81 195317

    [14]

    Xu Y, Chen X, Wang J S, Gu B L, Duan W 2010 Phys. Rev. B 81 195425

    [15]

    Xu Y, Li Z, Duan W 2014 Small 10 2182

    [16]

    Xu W, Zhang G, Li B 2015 J. Chem. Phys. 143 154703

    [17]

    Xu Y, Tang P, Zhang S C 2015 Phys. Rev. B 92 081112

    [18]

    Peng X F, Chen K Q 2014 Carbon 77 360

    [19]

    Peng X F, Chen K Q 2016 Carbon 100 36

    [20]

    Yao H F, Xie Y E, Ou Y T, Chen Y P 2013 Acta Phys. Sin. 62 068102 (in Chinese) [姚海峰, 谢月娥, 欧阳滔, 陈元平 2013 62 068102]

    [21]

    Hua Y C, Cao B Y 2015 Acta Phys. Sin. 64 146501 (in Chinese) [华钰超, 曹炳阳 2015 64 146501]

    [22]

    Ouyang F P, Xu H, Li M J 2008 Acta Phys. Chim. Sin. 24 328 (in Chinese) [欧阳方平, 徐慧, 李明君 2008 物理化学学报 24 328]

    [23]

    Huang W Q, Huang G F, Wang L L, Huang B Y 2007 Phys. Rev. B 75 233415

    [24]

    Bao Z G, Chen Y P, Ouyang T, Yang K K, Zhong J X 2011 Acta Phys. Sin. 60 028103 (in Chinese) [鲍志刚, 陈元平, 欧阳滔, 杨凯科, 钟建新 2011 60 028103]

    [25]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [26]

    Peng X F, Wang X J, Chen L Q, Chen K Q 2012 Europhys. Lett. 98 56001

    [27]

    Ouyang T, Chen Y, Xie Y 2010 Phys. Rev. B 82 245403

    [28]

    Yang N, Zhang G, Li B 2009 Appl. Phys. Lett. 95 033107

    [29]

    Liu X J, Zhang G, Zhang Y W 2016 Nano Lett. 16 4954

    [30]

    Sevincli H, Cuniberti G 2010 Phys. Rev. B 81 113401

    [31]

    Ouyang T, Chen Y, Xie Y, Stocks G M, Zhong J X 2011 Appl. Phys. Lett. 99 233101

    [32]

    Zhu T, Ertekin E 2014 Phys. Rev. B 90 195209

    [33]

    Ouyang T, Chen Y P, Yang K K, Zhong J X 2009 Europhys. Lett. 88 28002

    [34]

    Chen J, Zhang G, Li B 2013 Nanoscale 5 532

    [35]

    Chen J, Walther J H, Koumoutsakos P 2014 Nano Lett. 14 819

    [36]

    Peng X F, Xiong C, Wang X J, Chen L Q, Luo Y F, Li J B 2013 Comput. Mater. Sci. 77 440

    [37]

    Pan C N, Xie Z X, Tang L M, Chen K Q 2012 Appl. Phys. Lett. 101 103115

    [38]

    Zheng H, Liu H J, Tan X J, L H Y, Pan L, Shi J, Tang X F 2012 Appl. Phys. Lett. 100 093104

    [39]

    Huang W, Wang J S, Liang G 2011 Phys. Rev. B 84 045410

    [40]

    Hu J, Wang Y, Vallabhaneni A, Ruan X, Chen Y P 2011 Phys. Rev. B 99 113101

    [41]

    Xie Z X, Chen K Q, Duan W H 2011 J. Phys. -Condens. Matter 23 315302

    [42]

    Bretin M S, Malyshev A V, Orellana P A, Dominguez Adame F 2015 Phys. Rev. B 91 085431

    [43]

    Xu Y, Chen X, Gu B L, Duan W 2009 Appl. Phys. Lett. 95 233116

  • [1]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [2]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese) [陈晓彬, 段文晖 2015 64 186302]

    [3]

    Zhai X C, Qi F H, Xu Y F, Zhou X F, Jin G J 2015 Prog. Phys. 35 1 (in Chinese) [翟学超, 戚凤华, 许亚芳, 周兴飞, 金国钧 2015 物理学进展 35 1]

    [4]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [5]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [6]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491

    [7]

    Balandin A A 2011 Nat. Mater. 10 569

    [8]

    Peng X F, Wang X J, Gong Z Q, Chen K Q 2011 Appl. Phys. Lett. 99 233105

    [9]

    Peng X F, Zhou X, Tan S H, Wang X J, Chen K Q 2017 Carbon 113 334

    [10]

    Tan S H, Tang L M, Xie Z X, Pan C N, Chen K Q 2013 Carbon 65 181

    [11]

    Chen X K, Xie Z X, Zhou W X, Tang L M, Chen K Q 2016 Appl. Phys. Lett. 109 023101

    [12]

    Chen K Q, Li W X, Duan W, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422

    [13]

    Peng X F, Chen K Q, Wan Q, Zou B S, Duan W 2010 Phys. Rev. B 81 195317

    [14]

    Xu Y, Chen X, Wang J S, Gu B L, Duan W 2010 Phys. Rev. B 81 195425

    [15]

    Xu Y, Li Z, Duan W 2014 Small 10 2182

    [16]

    Xu W, Zhang G, Li B 2015 J. Chem. Phys. 143 154703

    [17]

    Xu Y, Tang P, Zhang S C 2015 Phys. Rev. B 92 081112

    [18]

    Peng X F, Chen K Q 2014 Carbon 77 360

    [19]

    Peng X F, Chen K Q 2016 Carbon 100 36

    [20]

    Yao H F, Xie Y E, Ou Y T, Chen Y P 2013 Acta Phys. Sin. 62 068102 (in Chinese) [姚海峰, 谢月娥, 欧阳滔, 陈元平 2013 62 068102]

    [21]

    Hua Y C, Cao B Y 2015 Acta Phys. Sin. 64 146501 (in Chinese) [华钰超, 曹炳阳 2015 64 146501]

    [22]

    Ouyang F P, Xu H, Li M J 2008 Acta Phys. Chim. Sin. 24 328 (in Chinese) [欧阳方平, 徐慧, 李明君 2008 物理化学学报 24 328]

    [23]

    Huang W Q, Huang G F, Wang L L, Huang B Y 2007 Phys. Rev. B 75 233415

    [24]

    Bao Z G, Chen Y P, Ouyang T, Yang K K, Zhong J X 2011 Acta Phys. Sin. 60 028103 (in Chinese) [鲍志刚, 陈元平, 欧阳滔, 杨凯科, 钟建新 2011 60 028103]

    [25]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [26]

    Peng X F, Wang X J, Chen L Q, Chen K Q 2012 Europhys. Lett. 98 56001

    [27]

    Ouyang T, Chen Y, Xie Y 2010 Phys. Rev. B 82 245403

    [28]

    Yang N, Zhang G, Li B 2009 Appl. Phys. Lett. 95 033107

    [29]

    Liu X J, Zhang G, Zhang Y W 2016 Nano Lett. 16 4954

    [30]

    Sevincli H, Cuniberti G 2010 Phys. Rev. B 81 113401

    [31]

    Ouyang T, Chen Y, Xie Y, Stocks G M, Zhong J X 2011 Appl. Phys. Lett. 99 233101

    [32]

    Zhu T, Ertekin E 2014 Phys. Rev. B 90 195209

    [33]

    Ouyang T, Chen Y P, Yang K K, Zhong J X 2009 Europhys. Lett. 88 28002

    [34]

    Chen J, Zhang G, Li B 2013 Nanoscale 5 532

    [35]

    Chen J, Walther J H, Koumoutsakos P 2014 Nano Lett. 14 819

    [36]

    Peng X F, Xiong C, Wang X J, Chen L Q, Luo Y F, Li J B 2013 Comput. Mater. Sci. 77 440

    [37]

    Pan C N, Xie Z X, Tang L M, Chen K Q 2012 Appl. Phys. Lett. 101 103115

    [38]

    Zheng H, Liu H J, Tan X J, L H Y, Pan L, Shi J, Tang X F 2012 Appl. Phys. Lett. 100 093104

    [39]

    Huang W, Wang J S, Liang G 2011 Phys. Rev. B 84 045410

    [40]

    Hu J, Wang Y, Vallabhaneni A, Ruan X, Chen Y P 2011 Phys. Rev. B 99 113101

    [41]

    Xie Z X, Chen K Q, Duan W H 2011 J. Phys. -Condens. Matter 23 315302

    [42]

    Bretin M S, Malyshev A V, Orellana P A, Dominguez Adame F 2015 Phys. Rev. B 91 085431

    [43]

    Xu Y, Chen X, Gu B L, Duan W 2009 Appl. Phys. Lett. 95 233116

  • [1] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究.  , 2022, 71(2): 027803. doi: 10.7498/aps.71.20211477
    [2] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运.  , 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [3] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究.  , 2021, (): . doi: 10.7498/aps.70.20211477
    [4] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质.  , 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [5] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江. 聚噻吩单链量子热输运的第一性原理研究.  , 2018, 67(2): 026501. doi: 10.7498/aps.67.20171198
    [6] 卿前军, 周欣, 谢芳, 陈丽群, 王新军, 谭仕华, 彭小芳. 多通道石墨纳米带中弹性声学声子输运和热导特性.  , 2016, 65(8): 086301. doi: 10.7498/aps.65.086301
    [7] 白继元, 贺泽龙, 李立, 韩桂华, 张彬林, 姜平晖, 樊玉环. 两端线型双量子点分子Aharonov-Bohm干涉仪电输运.  , 2015, 64(20): 207304. doi: 10.7498/aps.64.207304
    [8] 陈晓彬, 段文晖. 低维纳米材料量子热输运与自旋热电性质 ——非平衡格林函数方法的应用.  , 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [9] 贺泽龙, 白继元, 李鹏, 吕天全. T型双量子点分子Aharonov-Bohm干涉仪的电输运.  , 2014, 63(22): 227304. doi: 10.7498/aps.63.227304
    [10] 白继元, 贺泽龙, 杨守斌. 平行耦合双量子点分子A-B干涉仪的电荷及其自旋输运.  , 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [11] 姚海峰, 谢月娥, 欧阳滔, 陈元平. 嵌入线型缺陷的石墨纳米带的热输运性质.  , 2013, 62(6): 068102. doi: 10.7498/aps.62.068102
    [12] 彭小芳, 陈丽群, 罗勇锋, 刘凌虹, 王凯军. 含双T形量子结构的量子波导中声学声子输运和热导.  , 2013, 62(5): 056805. doi: 10.7498/aps.62.056805
    [13] 安兴涛, 穆惠英, 咸立芬, 刘建军. 量子点双链中电子自旋极化输运性质.  , 2012, 61(15): 157201. doi: 10.7498/aps.61.157201
    [14] 鲍志刚, 陈元平, 欧阳滔, 杨凯科, 钟建新. L型石墨纳米结的热输运.  , 2011, 60(2): 028103. doi: 10.7498/aps.60.028103
    [15] 聂六英, 李春先, 周晓萍, 程芳, 王成志. 结构缺陷对量子波导腔中热导的调控.  , 2011, 60(11): 116301. doi: 10.7498/aps.60.116301
    [16] 叶伏秋, 李科敏, 彭小芳. 低温下多通道量子结构中的弹性声子输运和热导.  , 2011, 60(3): 036806. doi: 10.7498/aps.60.036806
    [17] 彭小芳, 王新军, 龚志强, 陈丽群. 量子点调制的一维量子波导中声学声子输运和热导.  , 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [18] 尹永琦, 李华, 马佳宁, 贺泽龙, 王选章. 多端耦合量子点分子桥的量子输运特性研究.  , 2009, 58(6): 4162-4167. doi: 10.7498/aps.58.4162
    [19] 姚凌江, 王玲玲. 含半圆弧形腔的量子波导中声学声子输运和热导特性.  , 2008, 57(5): 3100-3106. doi: 10.7498/aps.57.3100
    [20] 戴振宏, 倪 军. 基于格林函数的多终端量子链状体系电子输运性质的研究.  , 2005, 54(7): 3342-3345. doi: 10.7498/aps.54.3342
计量
  • 文章访问数:  5767
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-22
  • 修回日期:  2017-03-31
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map