搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种滑移区气体流动的格子Boltzmann曲边界处理新格式

顾娟 黄荣宗 刘振宇 吴慧英

引用本文:
Citation:

一种滑移区气体流动的格子Boltzmann曲边界处理新格式

顾娟, 黄荣宗, 刘振宇, 吴慧英

A new curved boundary treatment in lattice Boltzmann method for micro gas flow in the slip regime

Gu Juan, Huang Rong-Zong, Liu Zhen-Yu, Wu Hui-Ying
PDF
导出引用
  • 针对滑移区复杂气-固边界存在速度滑移现象,提出了一种基于格子Boltzmann方法的非平衡态外推与有限差分相结合的曲边界处理新格式.该格式具有可考虑实际物理边界与网格线偏移量的优势,较传统half-way DBB(diffusive bounce-back)格式更能准确反映实际边界情况,同时还可获取壁面处气体宏观量及其法向梯度等信息.采用本文所提曲边界处理格式模拟分析了滑移区气体平直/倾斜微通道Poiseuille流、微圆柱绕流和同心微圆柱面旋转Couette流问题.研究结果表明,采用曲边界处理新格式所得结果与理论值以及文献结果符合良好,适用于滑移区气体流动的复杂边界处理,且比half-way DBB格式具有更高的精度,较修正DBB格式具有更好的适应性.
    A new curved boundary treatment in lattice Boltzmann method is developed for micro gas flow in the slip regime. The proposed treatment is a combination of the nonequilibrium extrapolation scheme for curved boundary with no-slip velocity condition and the counter-extrapolation method for the velocity and its normal gradient on the curved boundary. Taking into consideration the effect of the offset between the physical boundary and the closest grid line, the new treatment is proved to be more accurate than the traditional half-way diffusive bounce-back (DBB) scheme. The present treatment is also more applicable than the modified DBB scheme because the specific gas-wall interaction parameters need to be determined to ensure the validation of the modified DBB scheme.The proposed boundary treatment is implemented to simulate the benchmark problems, which include a Poiseuille flow in the aligned/inclined micro-channel, a flow past a microcylinder and a microcylindrical Couette flow. The results and conclusions are summarized as follows.1) The force-driven Poiseuille flow in an aligned microchannel is simulated separately with different values of wall-grid offset qδx (q=0.25, 0.5, 0.75, 1.0). With the consideration of the wall-grid offset, the numerical results with the new boundary treatment show good agreement with the analytical solutions. However, the results obtained by using the half-way DBB scheme only accord well with the analytical solutions under the condition of a fixed wall-grid offset (q=0.5).2) To demonstrate the capability of the present treatment in dealing with gas flow in a more complex geometry, the force-driven Poiseuille flow in a micro-channel is investigated separately with different inclined angles. The present numerical results fit well with the analytical solutions. However, the discrepancy between the results obtained with the half-way DBB scheme and the analytical solutions can be clearly observed near the inclined boundaries.3) The gas flow past a microcylinder is simulated to prove that the present treatment can deal with the curved boundary. The slip velocity profile along the micro cylinder periphery obtained with the present treatment accords well with the available data in the published literature. However, the results obtained with the half-way DBB scheme show lower values than the results from the published work.4) In the simulations of the microcylindrical Couette flow between two coaxial rotating cylinders for different Knudsen numbers the results obtained by using the present treatment show excellent agreement with the analytical solutions. However, the results obtained with the half-way DBB scheme and the modified DBB scheme deviate obviously from the analytical solutions near the inner and outer cylindrical walls, respectively.In summary, the new boundary treatment proposed in this work is capable of dealing with the complex gas-solid boundary in the slip regime. The new treatment has a higher accuracy than the half-way DBB scheme and shows a better applicability than the modified DBB scheme.
      通信作者: 吴慧英, whysrj@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51536005,51521004)资助的课题.
      Corresponding author: Wu Hui-Ying, whysrj@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51536005, 51521004).
    [1]

    Gad-el-Hak M 1999 ASME J. Fluids Eng. 121 5

    [2]

    Ho C M, Tai Y C 1998 Annu. Rev. Fluid Mech. 30 579

    [3]

    Zhang T T, Jia L, Wang Z C 2008 Chin. Phys. Lett. 25 180

    [4]

    Sun X M, He F, Ding Y T 2003 Chin. Phys. Lett. 20 2199

    [5]

    Liu C F, Ni Y S 2008 Chin. Phys. B 17 4554

    [6]

    Tao S, Wang L, Guo Z L 2014 Acta Phys. Sin. 63 214703 (in Chinese) [陶实, 王亮, 郭照立 2014 63 214703]

    [7]

    Wang Z, Liu Y, Zhang J Z 2016 Acta Phys. Sin. 65 014703 (in Chinese) [王佐, 刘雁, 张家忠 2016 65 014703]

    [8]

    Guo Z L, Zheng C G, Shi B C 2002 Phys. Fluids 14 2007

    [9]

    Mei R W, Luo L S, Shyy W 1999 J. Comput. Phys. 155 307

    [10]

    Ladd A J C 1994 J. Fluid Mech. 271 285

    [11]

    Noble D R, Torczynski J R 1998 Int. J. Mod. Phys. C 9 1189

    [12]

    Yu Z, Yang H, Fan L S 2011 Chem. Eng. Sci. 66 3441

    [13]

    Lee C H, Huang Z H, Chiew Y M 2015 Eng. Appl. Comp. Fluid 9 370

    [14]

    Guo K K, Li L K, Xiao G, AuYeung N A, Mei R W 2015 Int. J. Heat Mass Tran. 88 306

    [15]

    Yin X W, Zhang J F 2012 J. Comput. Phys. 231 4295

    [16]

    Shi D Y, Wang Z K, Zhang A M 2014 Acta Phys. Sin. 63 074703 (in Chinese) [史冬岩, 王志凯, 张阿漫 2014 63 074703]

    [17]

    Le G G, Oulaid O, Zhang J F 2015 Phys. Rev. E 91 033306

    [18]

    Fu S C, Leung W W F, So R M C 2013 Commun. Comput. Phys. 14 126

    [19]

    Gao D Y, Chen Z Q, Chen L H, Zhang D L 2017 Int. J. Heat Mass Tran. 105 673

    [20]

    Izham M, Fukui T, Morinishi K 2011 J. Fluid Sci. Tech. 6 812

    [21]

    Nie D M, Lin J Z 2010 Chin. Phys. Lett. 27 104701

    [22]

    Fang H P, Wan R Z, Fan L W 2000 Chin. Phys. 9 515

    [23]

    Szalmas L 2007 Int. J. Mod. Phys. C 18 15

    [24]

    Tao S, Guo Z L 2015 Phys. Rev. E 91 043305

    [25]

    Guo Z L, Shi B C, Zheng C G 2011 Comput. Math. Appl. 61 3519

    [26]

    Suga K 2013 Fluid Dyn. Res. 45 034501

    [27]

    Yang W L, Li H X, Zhang T J, Elfadel I M 2015 ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels San Francisco, CA, USA, July 6-9, 2015 pV001T04A001

    [28]

    Buick J M, Greated C A 2000 Phys. Rev. E 61 5307

    [29]

    Guo Z L, Zheng C G, Shi B C 2002 Phys. Rev. E 65 046308

    [30]

    Sun Y H, Barber R W, Emerson D R 2005 Phys. Fluids 17 047102

    [31]

    Beskok A, Karniadakis G E 1994 J. Thermophys. Heat Tr. 8 647

  • [1]

    Gad-el-Hak M 1999 ASME J. Fluids Eng. 121 5

    [2]

    Ho C M, Tai Y C 1998 Annu. Rev. Fluid Mech. 30 579

    [3]

    Zhang T T, Jia L, Wang Z C 2008 Chin. Phys. Lett. 25 180

    [4]

    Sun X M, He F, Ding Y T 2003 Chin. Phys. Lett. 20 2199

    [5]

    Liu C F, Ni Y S 2008 Chin. Phys. B 17 4554

    [6]

    Tao S, Wang L, Guo Z L 2014 Acta Phys. Sin. 63 214703 (in Chinese) [陶实, 王亮, 郭照立 2014 63 214703]

    [7]

    Wang Z, Liu Y, Zhang J Z 2016 Acta Phys. Sin. 65 014703 (in Chinese) [王佐, 刘雁, 张家忠 2016 65 014703]

    [8]

    Guo Z L, Zheng C G, Shi B C 2002 Phys. Fluids 14 2007

    [9]

    Mei R W, Luo L S, Shyy W 1999 J. Comput. Phys. 155 307

    [10]

    Ladd A J C 1994 J. Fluid Mech. 271 285

    [11]

    Noble D R, Torczynski J R 1998 Int. J. Mod. Phys. C 9 1189

    [12]

    Yu Z, Yang H, Fan L S 2011 Chem. Eng. Sci. 66 3441

    [13]

    Lee C H, Huang Z H, Chiew Y M 2015 Eng. Appl. Comp. Fluid 9 370

    [14]

    Guo K K, Li L K, Xiao G, AuYeung N A, Mei R W 2015 Int. J. Heat Mass Tran. 88 306

    [15]

    Yin X W, Zhang J F 2012 J. Comput. Phys. 231 4295

    [16]

    Shi D Y, Wang Z K, Zhang A M 2014 Acta Phys. Sin. 63 074703 (in Chinese) [史冬岩, 王志凯, 张阿漫 2014 63 074703]

    [17]

    Le G G, Oulaid O, Zhang J F 2015 Phys. Rev. E 91 033306

    [18]

    Fu S C, Leung W W F, So R M C 2013 Commun. Comput. Phys. 14 126

    [19]

    Gao D Y, Chen Z Q, Chen L H, Zhang D L 2017 Int. J. Heat Mass Tran. 105 673

    [20]

    Izham M, Fukui T, Morinishi K 2011 J. Fluid Sci. Tech. 6 812

    [21]

    Nie D M, Lin J Z 2010 Chin. Phys. Lett. 27 104701

    [22]

    Fang H P, Wan R Z, Fan L W 2000 Chin. Phys. 9 515

    [23]

    Szalmas L 2007 Int. J. Mod. Phys. C 18 15

    [24]

    Tao S, Guo Z L 2015 Phys. Rev. E 91 043305

    [25]

    Guo Z L, Shi B C, Zheng C G 2011 Comput. Math. Appl. 61 3519

    [26]

    Suga K 2013 Fluid Dyn. Res. 45 034501

    [27]

    Yang W L, Li H X, Zhang T J, Elfadel I M 2015 ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels San Francisco, CA, USA, July 6-9, 2015 pV001T04A001

    [28]

    Buick J M, Greated C A 2000 Phys. Rev. E 61 5307

    [29]

    Guo Z L, Zheng C G, Shi B C 2002 Phys. Rev. E 65 046308

    [30]

    Sun Y H, Barber R W, Emerson D R 2005 Phys. Fluids 17 047102

    [31]

    Beskok A, Karniadakis G E 1994 J. Thermophys. Heat Tr. 8 647

  • [1] 赖瑶瑶, 陈鑫梦, 柴振华, 施保昌. 基于格子Boltzmann方法的钉扎螺旋波反馈控制.  , 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] 张恒, 任峰, 胡海豹. 基于格子Boltzmann方法的幂律流体二维顶盖驱动流转捩研究.  , 2021, 70(18): 184703. doi: 10.7498/aps.70.20210451
    [3] 周光雨, 陈力, 张鸿雁, 崔海航. 基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力.  , 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [4] 王佐, 张家忠, 王恒. 非正交多松弛系数轴对称热格子Boltzmann方法.  , 2017, 66(4): 044701. doi: 10.7498/aps.66.044701
    [5] 臧晨强, 娄钦. 复杂微通道内非混相驱替过程的格子Boltzmann方法.  , 2017, 66(13): 134701. doi: 10.7498/aps.66.134701
    [6] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟.  , 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [7] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟.  , 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [8] 刘邱祖, 寇子明, 贾月梅, 吴娟, 韩振南, 张倩倩. 改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟.  , 2014, 63(10): 104701. doi: 10.7498/aps.63.104701
    [9] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟.  , 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [10] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究.  , 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [11] 陶实, 王亮, 郭照立. 微尺度振荡Couette流的格子Boltzmann模拟.  , 2014, 63(21): 214703. doi: 10.7498/aps.63.214703
    [12] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法.  , 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [13] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟.  , 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [14] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟.  , 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [15] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流.  , 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [16] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟.  , 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [17] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟.  , 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [18] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用.  , 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [19] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟.  , 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [20] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程.  , 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
计量
  • 文章访问数:  6110
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-18
  • 修回日期:  2017-04-05
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map