搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼球烯B40在外电场下的基态性质和光谱特性

李世雄 张正平 隆正文 秦水介

引用本文:
Citation:

硼球烯B40在外电场下的基态性质和光谱特性

李世雄, 张正平, 隆正文, 秦水介

Ground state properties and spectral properties of borospherene B40 under different external electric fields

Li Shi-Xiong, Zhang Zheng-Ping, Long Zheng-Wen, Qin Shui-Jie
PDF
导出引用
  • 以6-31G*为基组,采用密度泛函PBE0方法研究了不同外电场(00.060 a.u.)对硼球烯B40的基态几何结构、电荷分布、能量、电偶极矩、能隙、红外及拉曼光谱特性的影响;继而采用含时的TD-PBE0方法研究了硼球烯B40在外电场下的电子光谱.研究结果表明: 外电场的加入导致分子对称性降低,当电场从0 a.u.变化到0.060 a.u.时,偶极矩逐渐增加,体系总能量和能隙一直减小;外电场的加入将改变红外和拉曼光谱特征,如谐振频率的移动以及红外和拉曼峰的增强或减弱;外电场对硼球烯B40的电子光谱影响较大,当电场从0 a.u.变化到0.060 a.u.时,电子光谱发生红移,同时对振子强度有很大影响,原来振子强度最强的激发态变弱或成为禁阻跃迁,而原来振子强度很弱或禁阻的激发态变得最强.可以通过改变外电场来改变B40的基态性质,以及控制B40的光谱特性.
    The recent discovery of borospherene B40 marks the onset of a new class of all-boron fullerenes. External electric field can influence the structure and property of molecule. It is necessary to understand the electrostatic field effect in the borospherene B40. In this work, density functional theory method at the PBE0 level with the 6-31G* basis set is used to investigate the ground state structures, mulliken atomic charges, the highest occupied molecular orbital (HOMO) energy levels, the lowest unoccupied molecular orbital (LUMO) energy levels, energy gaps, electric dipole moments, infrared spectra and Raman spectra of borospherene B40 under the external electric field within the range of values F=0-0.06 a.u.. The electronic spectra (the first 18 excited states contain excited energies, excited wavelengths and oscillator strengths) of borospherene B40 are calculated by the time-dependent density functional theory method (TD-PBE0) with the 6-31G* basis set under the same external electric field. The results show that borospherene B40 can be elongated in the direction of electric field and B40 molecule is polarized under the external electric field. Meanwhile, the addition of external electric field results in lower symmetry (C2v), however, electronic state of borospherene B40 is not changed under the external electric field. Moreover, the calculated results show that the electric dipole moment is proved to be increasing with the increase of the external field intensity, but the total energy and energy gap are proved to decrease with the increase of external field intensity. The addition of external electric field can modify the infrared and Raman spectra, such as the shift of vibrational frequency and the strengthening of infrared and Raman peaks. Furthermore, the calculated results indicate that the external electric field has a significant effect on the electronic spectrum of borospherene B40. The increase of the electric field intensity can lead to the redshift of electronic spectrum. With the change of the electric field intensity, the strongest excited state (with the biggest oscillator strength) can become very weak (with the small oscillator strength) or optically inactive (with the oscillator strength of zero). Meanwhile, the weak excited state can become the strongest excited state by the external field. The ground state properties and spectral properties of borospherene B40 can be modified by the external electric field. Our findings can provide theoretical guidance for the application of borospherene B40 in the future.
      通信作者: 张正平, zpzhang@gzu.edu.cn
    • 基金项目: 国家国际科技合作专项基金(批准号:2014DFA00670)、贵州省教育厅青年科技人才成长基金(批准号:黔教合KY字[2016]217)和贵州省教育厅特色重点实验室基金(批准号:黔教合KY字[2014]217)资助的课题.
      Corresponding author: Zhang Zheng-Ping, zpzhang@gzu.edu.cn
    • Funds: Project supported by the International Science and Technology Cooperation Program of China (Grant No. 2014DFA00670), the Growth Foudation for Young Scientists of Education Department of Guizhou Province, China (Grant No. QJH KY[2016]217) and the Characteristic Key Laboratory Foudation of Education Department of Guizhou Province, China (Grant No. QJH KY[2014]217).
    [1]

    Kroto H W, Heath J R, Obrien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Wang X S, Li Q Q, Xie J, Jin Z, Wang J Y, Li Y, Jiang K L, Tan S S 2009 Nano Lett. 9 3137

    [5]

    Zhai H J, Kiran B, Li J, Wang L S 2003 Nature Mater. 2 827

    [6]

    Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Nati. Acad. Sci 102 961

    [7]

    Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S 2006 Coord. Chem. Rev. 250 2811

    [8]

    Oger E, Crawford N R M, Kelting R, Weis P, Kappes M M, Ahlrichs R 2007 Angew. Chem. Int. Ed. 46 8503

    [9]

    Chen Q, Wei G F, Tian W J, Bai H, Liu Z P, Zhai H J Li S D 2014 Phys. Chem. Chem. Phys. 16 18282

    [10]

    Szwacki N G, Sadrzadeh A, Yakobson B I 2007 Phys. Rev. Lett. 98 166804

    [11]

    Sheng X L, Yan Q B, Zheng Q R, Su G 2009 Phys. Chem. Chem. Phys. 11 9696

    [12]

    Wang L, Zhao J J, Li F Y, Chen Z F 2010 Chem. Phys. Lett. 501 16

    [13]

    Cheng L J 2012 J. Chem. Phys. 136 104301

    [14]

    Lu H G, Li S D 2013 J. Chem. Phys. 139 224307

    [15]

    Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S 2014 Nat. Chem. 6 727

    [16]

    He R X, Zeng X C 2015 Chem. Commun. 51 3185

    [17]

    Li S X, Zhang Z P, Long Z W, Sun G Y, Qin S J 2016 Sci. Rep. 6 25020

    [18]

    Bai H, Chen Q, Zhai H J, Li S D 2015 Angew. Chem. Int. Ed. 54 941

    [19]

    Jin P, Hou Q H, Tang C C, Chen Z F 2015 Theor. Chem. Acc. 34 1

    [20]

    Yang Z, Ji Y L, Lan G Q, Xu L C, Liu X G, Xu B S 2015 Solid State Commun. 217 38

    [21]

    An Y P, Zhang M J, Wu D P, Fu Z M, Wang T T, Xia C X 2016 Phys. Chem. Chem. Phys. 18 12024

    [22]

    Dong H L, Hou T J, Lee S T, Li Y Y 2015 Sci. Rep. 5 09952

    [23]

    Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 Acta Phys. Sin. 61 043104 (in Chinese) [徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳 2012 61 043104]

    [24]

    Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101 (in Chinese) [曹欣伟, 任杨, 刘慧, 李姝丽 2014 63 043101]

    [25]

    Li S X, Wu Y G, Linhu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101 (in Chinese) [李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 64 043101]

    [26]

    Shen H J, Shi Y J 2004 Chin. Atom Mol. Phys. 21 617 (in Chinese) [沈海军, 史友进 2004 原子与分子 21 617]

    [27]

    Frisch M J, Tracks G W, Schlegel H B, et al. 2009 Gaussian 09, Revision A. 02 (Wallingford CT: Gaussian Inc.)

    [28]

    Tuchin A V, Bityutskaya L A, Bormontov E N 2015 Eur. Phys. J. D 69 87

    [29]

    Chen, Q, Zhang S Y, Bai H, Tian W J, Gao T, Li H R, Miao C Q, Mu Y W, Lu H G, Zhai H J, Li S D 2015 Angew. Chem. Int. Ed. 54 8160

  • [1]

    Kroto H W, Heath J R, Obrien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Wang X S, Li Q Q, Xie J, Jin Z, Wang J Y, Li Y, Jiang K L, Tan S S 2009 Nano Lett. 9 3137

    [5]

    Zhai H J, Kiran B, Li J, Wang L S 2003 Nature Mater. 2 827

    [6]

    Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Nati. Acad. Sci 102 961

    [7]

    Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S 2006 Coord. Chem. Rev. 250 2811

    [8]

    Oger E, Crawford N R M, Kelting R, Weis P, Kappes M M, Ahlrichs R 2007 Angew. Chem. Int. Ed. 46 8503

    [9]

    Chen Q, Wei G F, Tian W J, Bai H, Liu Z P, Zhai H J Li S D 2014 Phys. Chem. Chem. Phys. 16 18282

    [10]

    Szwacki N G, Sadrzadeh A, Yakobson B I 2007 Phys. Rev. Lett. 98 166804

    [11]

    Sheng X L, Yan Q B, Zheng Q R, Su G 2009 Phys. Chem. Chem. Phys. 11 9696

    [12]

    Wang L, Zhao J J, Li F Y, Chen Z F 2010 Chem. Phys. Lett. 501 16

    [13]

    Cheng L J 2012 J. Chem. Phys. 136 104301

    [14]

    Lu H G, Li S D 2013 J. Chem. Phys. 139 224307

    [15]

    Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S 2014 Nat. Chem. 6 727

    [16]

    He R X, Zeng X C 2015 Chem. Commun. 51 3185

    [17]

    Li S X, Zhang Z P, Long Z W, Sun G Y, Qin S J 2016 Sci. Rep. 6 25020

    [18]

    Bai H, Chen Q, Zhai H J, Li S D 2015 Angew. Chem. Int. Ed. 54 941

    [19]

    Jin P, Hou Q H, Tang C C, Chen Z F 2015 Theor. Chem. Acc. 34 1

    [20]

    Yang Z, Ji Y L, Lan G Q, Xu L C, Liu X G, Xu B S 2015 Solid State Commun. 217 38

    [21]

    An Y P, Zhang M J, Wu D P, Fu Z M, Wang T T, Xia C X 2016 Phys. Chem. Chem. Phys. 18 12024

    [22]

    Dong H L, Hou T J, Lee S T, Li Y Y 2015 Sci. Rep. 5 09952

    [23]

    Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 Acta Phys. Sin. 61 043104 (in Chinese) [徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳 2012 61 043104]

    [24]

    Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101 (in Chinese) [曹欣伟, 任杨, 刘慧, 李姝丽 2014 63 043101]

    [25]

    Li S X, Wu Y G, Linhu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101 (in Chinese) [李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 64 043101]

    [26]

    Shen H J, Shi Y J 2004 Chin. Atom Mol. Phys. 21 617 (in Chinese) [沈海军, 史友进 2004 原子与分子 21 617]

    [27]

    Frisch M J, Tracks G W, Schlegel H B, et al. 2009 Gaussian 09, Revision A. 02 (Wallingford CT: Gaussian Inc.)

    [28]

    Tuchin A V, Bityutskaya L A, Bormontov E N 2015 Eur. Phys. J. D 69 87

    [29]

    Chen, Q, Zhang S Y, Bai H, Tian W J, Gao T, Li H R, Miao C Q, Mu Y W, Lu H G, Zhai H J, Li S D 2015 Angew. Chem. Int. Ed. 54 8160

  • [1] 齐凯, 朱星光, 王军, 夏国栋. 外电场作用下纳米结构表面的固-液界面传热特性.  , 2024, 73(15): 156801. doi: 10.7498/aps.73.20240698
    [2] 李世雄, 陈德良, 张正平, 隆正文, 秦水介. 环形C18在外电场下的基态性质和激发特性.  , 2020, 69(10): 103101. doi: 10.7498/aps.69.20200268
    [3] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱.  , 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [4] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性.  , 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [5] 徐梅, 令狐荣锋, 支启军, 杨向东, 吴位巍. 自由基分子BeH外电场特性.  , 2016, 65(16): 163102. doi: 10.7498/aps.65.163102
    [6] 杨涛, 刘代俊, 陈建钧. 外电场下二氧化硫的分子结构及其特性.  , 2016, 65(5): 053101. doi: 10.7498/aps.65.053101
    [7] 李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介. ZnSe在外电场下的基态性质和激发特性研究.  , 2015, 64(4): 043101. doi: 10.7498/aps.64.043101
    [8] 吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋. 外电场下CdSe的基态性质和光谱特性研究.  , 2015, 64(15): 153102. doi: 10.7498/aps.64.153102
    [9] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性.  , 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [10] 凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠. 外电场下二氧化锆的分子结构及其特性.  , 2014, 63(2): 023102. doi: 10.7498/aps.63.023102
    [11] 李涛, 唐延林, 凌智钢, 李玉鹏, 隆正文. 外电场对对硝基氯苯分子结构与电子光谱影响的研究.  , 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [12] 安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华. 外电场作用下ZnO分子的结构特性研究.  , 2013, 62(7): 073103. doi: 10.7498/aps.62.073103
    [13] 凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠. 外电场下2,2,5,5-四氯联苯的分子结构与电子光谱.  , 2013, 62(22): 223102. doi: 10.7498/aps.62.223102
    [14] 杜建宾, 唐延林, 隆正文. 外电场作用下的五氯酚分子结构和电子光谱的研究.  , 2012, 61(15): 153101. doi: 10.7498/aps.61.153101
    [15] 黄多辉, 王藩侯, 程晓洪, 万明杰, 蒋刚. GeTe和GeSe 分子在外电场下的特性研究.  , 2011, 60(12): 123101. doi: 10.7498/aps.60.123101
    [16] 徐国亮, 夏要争, 刘雪峰, 张现周, 刘玉芳. 外电场作用下TiO光激发特性研究.  , 2010, 59(11): 7762-7768. doi: 10.7498/aps.59.7762
    [17] 徐国亮, 刘雪峰, 夏要争, 张现周, 刘玉芳. 外电场作用下Si2O分子的激发特性.  , 2010, 59(11): 7756-7761. doi: 10.7498/aps.59.7756
    [18] 姜明, 苟富均, 闫安英, 张传武, 苗峰. BeO分子在不同方向外电场中的能量和光谱.  , 2010, 59(11): 7743-7748. doi: 10.7498/aps.59.7743
    [19] 黄多辉, 王藩侯, 闵军, 朱正和. 外电场作用下MgO分子的特性研究.  , 2009, 58(5): 3052-3057. doi: 10.7498/aps.58.3052
    [20] 徐国亮, 刘玉芳, 孙金锋, 张现周, 朱正和. 外电场作用下SiO电子结构特性研究.  , 2007, 56(10): 5704-5708. doi: 10.7498/aps.56.5704
计量
  • 文章访问数:  6519
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-14
  • 修回日期:  2017-03-12
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map