搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CH3I2+的二体、三体解离过程的理论研究

孙启响 闫冰

引用本文:
Citation:

CH3I2+的二体、三体解离过程的理论研究

孙启响, 闫冰

Computational study of two-body and three-body dissociation of CH3I2+

Sun Qi-Xiang, Yan Bing
PDF
导出引用
  • 采用密度泛函和耦合簇理论从过渡态的观点对CH3I2+离子的解离过程进行了计算和分析.优化得到了CH3I,CH3I+和CH3I2+的稳定结构及解离过渡态的几何构型并给出了相应能量,计算的第一、二电离能与实验结果符合.基于母体离子、过渡态和解离碎片的几何结构和能量,对CH3I2+的两体解离过程和三体解离过程进行了详细分析和讨论.给出了二体、三体解离的可能解离通道,并分析了实验上观测到的解离碎片离子的产生机制.计算结果表明,三重和单重绝热势能面上的一些解离过程表现出明显的差异.
    As one of the simplest alkyl halides, methyl iodide is extensively investigated in the research fields of the photodissociation and photoionization. In the experimental investigations of ionization and dissociation, many molecular fragments, such as Iq+(q3), CHn+(n3), H+, etc., are observed in the mass spectrum of CH3I. While the mechanisms for dissociation and ionization are not completely understood. As the doubly-ionized product, CH3I2+ exhibits different isomer structures and isomerization reactions. The dissociation channels of different isomers in combination with the corresponding transition states of CH3I2+ are helpful for better understanding the dissociation and ionization dynamics of CH3I in an intense laser field. In our present work, the dissociation channels of CH3I2+ are investigated by the density functional and couple cluster theory. The geometries and energies corresponding to the local isomers and the transition states of CH3I, CH3I+ and CH3I2+ are computed. The first and second ionization energies we measured are in good agreement with experimental values. Our computational results show that the ground state of the CH3I2+ is a triplet one with 3A2 symmetry. Totally 11 two-body and 15 three-body dissociation channels of the CH3I2+ on both the lowest singlet and the lowest triplet potential energy surfaces are computed and analyzed in detail. Our computations indicate that seven two-body dissociations channels, i.e., six singlet and one triplet ones, are exergonic, in which CH3I2+(1A')CH2++HI+(4A1) is the easiest process to achieve; four exergonic three-body dissociation channels with three on singlet potential energy surface and one on triplet potential energy surface are found. The possible mechanisms for producing the dissociative ionized fragments observed in experiments, CH3+, H+, and I+, are presented; furthermore, the dissociation channels generating other ions not observed in experiments, such as H3+ et al, are also given for further experimental study. The detailed information about dissociation channels and fragments is summarized for further experimental comparisons. In the computations, we find that the density functional theory and CCSD(T) methods give different energy orders for a few dissociation potential energy surfaces; and in this work, the analysis and discussion are performed based on the CCSD(T) results. Our computations indicate that the dissociation channels on singlet and triplet potential energy surface exhibit different behaviors.
      通信作者: 闫冰, yanbing@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574114)、吉林省自然科学基金(批准号:20150101003JC)和吉林农业大学科研启动基金资助的课题.
      Corresponding author: Yan Bing, yanbing@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574114), the Natural Science Foundation of Jilin Province, China (Grant No. 20150101003JC), and the Scientific Research Foundation of Jilin Agricultural University, China.
    [1]

    Cheng L 2007 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [程丽 2007 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [2]

    Li R, Yan B, Zhao S T, Guo Q Q, Lian K Y, Tian C J, Pan S F 2008 Acta Phys. Sin. 57 4130 (in Chinese) [李瑞, 闫冰, 赵书涛, 郭庆群, 连科研, 田传进, 潘守甫 2008 57 4130]

    [3]

    Liu H T, Yang Z, Gao Z J 2007 J. Chem. Phys. 126 044316

    [4]

    Goss S P, Mcgilvery D C, Morrison J D, Smith d L 1981 J. Chem. Phys. 75 757

    [5]

    Schneider W, Thiel W 1989 Chem. Phys. Lett. 157 367

    [6]

    Continetti R E, Balko B A, Lee Y T 1988 J. Chem. Phys. 89 3383

    [7]

    Mintz D M, Baer T 1976 J. Chem. Phys. 65 2407

    [8]

    Lee M, Kima M S 2007 J. Chem. Phys. 127 124313

    [9]

    Sparks R K, Shobotake K, Carlson L R, Lee Y T 1981 J. Chem. Phys. 75 3838

    [10]

    Zhong D, Cheng P Y, Zewail A H 1996 J. Chem. Phys. 105 7864

    [11]

    Imre D, KinseY J L, Sinha A, Krenos J 1988 J. Phys. Chem. 89 6667

    [12]

    Sundberg R L, Imre D, Hale M O, Kinsey J L, Coalson R D 1986 J. Phys. Chem. 90 5001

    [13]

    Johnson B R, Kittrell C, Kelly P B, KinseY J L 1996 J. Phys. Chem. 100 7743

    [14]

    Amatatsu Y, Yabushita S, Morokuma K 1996 J. Chem. Phys. 104 9783

    [15]

    Lehr L, Weinkauf R, Schlag E W 2001 Int. J. Mass. Spectrom. 206 191

    [16]

    Walter K, Weinkauf R, Boesl U, Schlag E W 1988 J. Chem. Phys. 89 1914

    [17]

    Sharma P, Vatsa R K, Rajasekhar B N, Das N C, Ghanty T K, Kulshreshtha S K 2005 Rapid Commun. Mass. Spectrom 19 1522

    [18]

    Zhang B L, Wang X Y, Lou N Q, Zhang B 2001 J. Spec. Acta Part A 57 1759

    [19]

    Chupka W A, Colson S D, Seaver M S, Wooddard A M 1983 Chem. Phys. Lett. 95 171

    [20]

    Shapiro M, Bersohn R 1980 J. Chem. Phys. 73 3810

    [21]

    Karlsson L, Jadmy R, Mattson L, Chau F T, Siegbahn K 1977 Phys. Scripta 16 225

    [22]

    Landolt H, Brnstein R, Fischer H, Madelung O, Deuschle G 1987 Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology (Vol. 17) (Berlin Heidelberg: Springer-Verlag)

    [23]

    Ragle J L, Stenhouse I A, Frost D C, Mcdowell C A 1970 J. Chem. Phys. 53 178

    [24]

    Randic M, Trinajstic N 1992 J. Chem. Edu. 69 701

    [25]

    Griffiths W J, Harris F M, Parry D E 1990 J. Chem. Soc. Faraday Trans. 86 2801

    [26]

    Yabushita S, Morokuma K 1988 Chem. Phys. Lett. 153 517

    [27]

    Kaziannis S, Siozos P, Kosmidis C 2005 Chem. Phys. Lett. 401 115

    [28]

    Dujardin G, Hellner L, Winkoun D, Besnard M 1986 J. Chem. Phys. 105 291

    [29]

    Guo H 1992 J. Chem. Phys. 96 2731

    [30]

    Roth J, Tsitrone E, Loarer T, Philipps V, Brezinsek S, Loarte A 2008 Plasma Phys. Control. Fusion 50 103001

    [31]

    Locht R, Dehareng D, Hottomann K, Kaziannis H, Jochims W, Hbaumgartel L B 2010 J. Phys. B: At. Mol. Opt. Phys. 43 105101

    [32]

    Li L, Kong X H, Zhang S D, Liu C H, Sun Z Q, Liu J P, Zhang L F, Qiao G 2007 J. Atom. Mol. Phys. 3 443 (in Chinese) [李丽, 孔祥和, 张树东, 刘存海, 孙志青, 刘建苹, 张良芳, 乔光 2007 原子与分子 3 443]

    [33]

    Griffiths W J, Franck M, Harris, Parry D E 1990 J. Chem. Soc. Faraday Trans. 86 2801

    [34]

    Ajitha D, Wierzbowska M, Lindh R, Malmqvist P A 2004 J. Chem. Phys. 121 5761

    [35]

    Alekseyev A B, Liebermann H P, Buenker R J, Yurchenko S N 2007 J. Chem. Phys 126 234102

    [36]

    Adjeddine M, Flament J P, Teichteil C 1987 Chem. Phys. 118 45

    [37]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [38]

    Bergner A, Dolg M, Kuechle W, Stoll H, Preuss H 1993 Mol. Phys. 80 1431

    [39]

    Martin J M L, Sundermann A 2001 J. Chem. Phys. 114 3408

  • [1]

    Cheng L 2007 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [程丽 2007 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [2]

    Li R, Yan B, Zhao S T, Guo Q Q, Lian K Y, Tian C J, Pan S F 2008 Acta Phys. Sin. 57 4130 (in Chinese) [李瑞, 闫冰, 赵书涛, 郭庆群, 连科研, 田传进, 潘守甫 2008 57 4130]

    [3]

    Liu H T, Yang Z, Gao Z J 2007 J. Chem. Phys. 126 044316

    [4]

    Goss S P, Mcgilvery D C, Morrison J D, Smith d L 1981 J. Chem. Phys. 75 757

    [5]

    Schneider W, Thiel W 1989 Chem. Phys. Lett. 157 367

    [6]

    Continetti R E, Balko B A, Lee Y T 1988 J. Chem. Phys. 89 3383

    [7]

    Mintz D M, Baer T 1976 J. Chem. Phys. 65 2407

    [8]

    Lee M, Kima M S 2007 J. Chem. Phys. 127 124313

    [9]

    Sparks R K, Shobotake K, Carlson L R, Lee Y T 1981 J. Chem. Phys. 75 3838

    [10]

    Zhong D, Cheng P Y, Zewail A H 1996 J. Chem. Phys. 105 7864

    [11]

    Imre D, KinseY J L, Sinha A, Krenos J 1988 J. Phys. Chem. 89 6667

    [12]

    Sundberg R L, Imre D, Hale M O, Kinsey J L, Coalson R D 1986 J. Phys. Chem. 90 5001

    [13]

    Johnson B R, Kittrell C, Kelly P B, KinseY J L 1996 J. Phys. Chem. 100 7743

    [14]

    Amatatsu Y, Yabushita S, Morokuma K 1996 J. Chem. Phys. 104 9783

    [15]

    Lehr L, Weinkauf R, Schlag E W 2001 Int. J. Mass. Spectrom. 206 191

    [16]

    Walter K, Weinkauf R, Boesl U, Schlag E W 1988 J. Chem. Phys. 89 1914

    [17]

    Sharma P, Vatsa R K, Rajasekhar B N, Das N C, Ghanty T K, Kulshreshtha S K 2005 Rapid Commun. Mass. Spectrom 19 1522

    [18]

    Zhang B L, Wang X Y, Lou N Q, Zhang B 2001 J. Spec. Acta Part A 57 1759

    [19]

    Chupka W A, Colson S D, Seaver M S, Wooddard A M 1983 Chem. Phys. Lett. 95 171

    [20]

    Shapiro M, Bersohn R 1980 J. Chem. Phys. 73 3810

    [21]

    Karlsson L, Jadmy R, Mattson L, Chau F T, Siegbahn K 1977 Phys. Scripta 16 225

    [22]

    Landolt H, Brnstein R, Fischer H, Madelung O, Deuschle G 1987 Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology (Vol. 17) (Berlin Heidelberg: Springer-Verlag)

    [23]

    Ragle J L, Stenhouse I A, Frost D C, Mcdowell C A 1970 J. Chem. Phys. 53 178

    [24]

    Randic M, Trinajstic N 1992 J. Chem. Edu. 69 701

    [25]

    Griffiths W J, Harris F M, Parry D E 1990 J. Chem. Soc. Faraday Trans. 86 2801

    [26]

    Yabushita S, Morokuma K 1988 Chem. Phys. Lett. 153 517

    [27]

    Kaziannis S, Siozos P, Kosmidis C 2005 Chem. Phys. Lett. 401 115

    [28]

    Dujardin G, Hellner L, Winkoun D, Besnard M 1986 J. Chem. Phys. 105 291

    [29]

    Guo H 1992 J. Chem. Phys. 96 2731

    [30]

    Roth J, Tsitrone E, Loarer T, Philipps V, Brezinsek S, Loarte A 2008 Plasma Phys. Control. Fusion 50 103001

    [31]

    Locht R, Dehareng D, Hottomann K, Kaziannis H, Jochims W, Hbaumgartel L B 2010 J. Phys. B: At. Mol. Opt. Phys. 43 105101

    [32]

    Li L, Kong X H, Zhang S D, Liu C H, Sun Z Q, Liu J P, Zhang L F, Qiao G 2007 J. Atom. Mol. Phys. 3 443 (in Chinese) [李丽, 孔祥和, 张树东, 刘存海, 孙志青, 刘建苹, 张良芳, 乔光 2007 原子与分子 3 443]

    [33]

    Griffiths W J, Franck M, Harris, Parry D E 1990 J. Chem. Soc. Faraday Trans. 86 2801

    [34]

    Ajitha D, Wierzbowska M, Lindh R, Malmqvist P A 2004 J. Chem. Phys. 121 5761

    [35]

    Alekseyev A B, Liebermann H P, Buenker R J, Yurchenko S N 2007 J. Chem. Phys 126 234102

    [36]

    Adjeddine M, Flament J P, Teichteil C 1987 Chem. Phys. 118 45

    [37]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [38]

    Bergner A, Dolg M, Kuechle W, Stoll H, Preuss H 1993 Mol. Phys. 80 1431

    [39]

    Martin J M L, Sundermann A 2001 J. Chem. Phys. 114 3408

  • [1] 李俊炜, 贾维敏, 魏雅璇, 吕沙沙, 王金涛, 李正操. 钼掺杂γ-U (100)表面上H2分子解离、H原子和O原子扩散的第一性原理研究.  , 2023, 72(14): 146401. doi: 10.7498/aps.72.20230033
    [2] 董肖. P掺杂LiNH2团簇与LiH反应机理的密度泛函理论研究及一种新储放氢机制.  , 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [3] 施斌, 袁荔, 唐天宇, 陆利敏, 赵先豪, 魏晓楠, 唐延林. 特丁基对苯二酚的光谱及密度泛函研究.  , 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [4] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究.  , 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [5] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响.  , 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [6] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究.  , 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [7] 张凤春, 李春福, 张丛雷, 冉曾令. H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究.  , 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [8] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究.  , 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [9] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究.  , 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [10] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究.  , 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [11] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究.  , 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [12] 李雪梅, 张建平. 5-(2-芳氧甲基苯并咪唑-1-亚甲基)-1,3,4噁二唑-2-硫酮的结构,光谱与热力学性质的理论研究.  , 2010, 59(11): 7736-7742. doi: 10.7498/aps.59.7736
    [13] 蒙大桥, 罗文华, 李赣, 陈虎翅. Pu(100)表面吸附CO2的密度泛函研究.  , 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [14] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究.  , 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [15] 陈玉红, 康 龙, 张材荣, 罗永春, 蒲忠胜. (Li3N)n(n=1—5)团簇结构与性质的密度泛函研究.  , 2008, 57(7): 4174-4181. doi: 10.7498/aps.57.4174
    [16] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性.  , 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [17] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究.  , 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [18] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究.  , 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [19] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究.  , 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] 谭明秋, 陶向明, 徐小军, 蔡建秋. 含铀化合物UAl3和USn3电子结构的密度泛函研究.  , 2003, 52(12): 3142-3149. doi: 10.7498/aps.52.3142
计量
  • 文章访问数:  6243
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-31
  • 修回日期:  2017-02-01
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map