-
本文提出了一种基于叠层衍射成像(ptychography)的二元光学元件的检测方法,该方法可实现对二元光学元件表面微观轮廓的检测以及特征尺寸的标定.相比于传统的二元光学元件检测方法,其使用无透镜成像技术,简化了系统结构并可适用于特殊环境下的检测.该方法可直接通过采集多幅衍射图,利用叠层衍射成像迭代算法可精确地复原大尺寸待测元件的表面微观轮廓,提高大尺寸器件的检测效率.本文模拟仿真了台阶高度与噪声大小对纯相位台阶板复原结果的影响,并在光学实验中选取计算全息板为样品,复原样品的表面微观轮廓信息以及得到台阶高度.以白光干涉仪检测结果为标准,该方法在精度要求不太高的前提下,可获得令人满意的成像质量.Due to the extremely high diffractive efficiency and flexible design freedom, binary optical element can realize specific function in the optical system in comparison with the traditional refractive optical element. Ptychography, which is a typical lensless optical imaging technology with simple structure, has the advantages of the extensible imaging range and high resolution. The topography of binary optical element can produce the phase difference between the illumination and transmission fields. The features of binary optical element are based on the complex amplitude modulation. So we can obtain the complex transmission function by using ptychography to realize the phase retrieval. In this paper, we propose a detection method for binary diffractive optical element based on ptychography. An improved ptychography optical system is designed by using the combination of variable aperture and lens to control the illumination field. Because the illumination field is a diverging spherical wave, the diffractive patterns can avoid the high contrast and the reconstruction result will contain more details of the sample. The proposed method can not only inspect a large region of the binary optical element, but also calibrate its feature size, such as step height. Compared with the traditional binary optical element detection methods, the proposed method can simplify the system structure, and it can be applied to special environment by using lensless imaging technology. The increasing of the diffraction pattern numbers can acquire the topography of the large size sample and improve the detection efficiency. Taking a phase step plate for sample, the simulations are conducted to analyze the influences of step height and noise on the recovery result. The results show that the detection range of step height is less than 1.5. We can realize a preferable sample reconstruction when the noise of diffraction pattern is less than 5%. A computer-generated holography (CGH) is reconstructed by using the extended ptychographic iterative engine. The diameter of illumination filed is selected to be about 2 mm in order to obtain a large detection region of the sample. The surface micro topography of CGH can be shown through the m 1.98 mm1.98 mm recovery result. More details can be obtained by changing the diameter of illumination filed about 1.6 mm. The recovery result is quite accurate and the error of step height is less than 30 nm compared with the result of white light interference detection. The simulation and experimental results verify the feasibility of this method. When the requirement for accuracy is not extremely high, the proposed method can obtain a satisfactory image quality. In addition, we hope to improve the proposed method, which can be more accurate to detect different types of optical elements in the future research.
-
Keywords:
- ptychography /
- binary optical element /
- phase retrieval /
- feature size calibration
[1] Stone T, George N 1988 Appl. Opt. 27 2960
[2] Guo T, Li F, Chen J P, Fu X, Hu X T 2016 Opt. Lasers Eng. 82 41
[3] Coppola G, Di Caprio G, Gioffr M, Puglisi R, Balduzzi D, Galli A, Miccio L, Paturzo M, Grilli S, Finizio A, Ferraro P 2010 Opt. Lett. 35 3390
[4] Chen X G, Liu S Y, Zhang C W, Jiang H, Ma Z C, Sun T Y, Xu Z M 2014 Opt. Express 22 15165
[5] Rodenburg J M, Hurst A C, Cullis A G 2007 Ultramicroscopy 107 227
[6] Sun J S, Zhang Y Z, Chen Q, Zuo C 2016 Acta Opt. Sin. 36 1011005 (in Chinese) [孙佳嵩, 张玉珍, 陈钱, 左超 2016 光学学报 36 1011005]
[7] Thibault P, Dierolf M, Bunk O, Menzel A, Pfeiffer F 2009 Ultramicroscopy 109 338
[8] Hoppe W 1969 Acta Cryst. A 25 495
[9] Fienup J R 1982 Appl. Opt. 21 2758
[10] Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795
[11] Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256
[12] Pan X C, Veetil S P, Liu C, Lin Q, Zhu J Q 2013 Chin. Opt. Lett. 11 021103
[13] Maiden A M, Humphry M J, Zhang F C, Rodenburg J M 2011 J. Opt. Soc. Am. A 28 604
[14] Rodenburg J M, Hurst A C, Cullis A G, Dobson B R, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I 2007 Phys. Rev. Lett. 98 034801
[15] Claus D, Maiden A M, Zhang F C, Sweeney F G, Humphry M J, Schluesener H, Rodenburg J M 2012 Opt. Express 20 9911
[16] Liu X L, Pan Z, Wang Y L, Shi Y S 2015 Acta Phys. Sin. 64 234201 (in Chinese) [刘祥磊, 潘泽, 王雅丽, 史祎诗 2015 64 234201]
[17] Wang Y L, Li T, Gao Q K, Zhang S G, Shi Y S 2013 Opt. Eng. 52 091720
[18] Claus D, Robinson D J, Chetwynd D G, Shuo Y, Pike W T, Jos J D J, Rodenburg J M 2013 J. Opt. 15 035702
[19] Tao H, Veetil S P, Cheng J, Pan X C, Wang H Y, Liu C, Zhu J Q 2015 Appl. Opt. 54 1776
[20] Wang H Y, Liu C, Veetil S P, Pan X C, Zhu J Q 2014 Opt. Express 22 2159
[21] Wang Y L, Shi Y S, Li T, Gao Q K, Xiao J, Zhang S G 2013 Acta Phys. Sin. 62 064206 (in Chinese) [王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国 2013 62 064206]
[22] He F, Rodenburg J M, Maiden A M, Midgley P A 2011 Ultramicroscopy 111 1117
[23] Humphry M J, Kraus B, Hurst A C, Maiden A M, Rodenburg J M 2012 Nat. Commun. 3 730
[24] Rodenburg J M, Hurst A C, Maiden A M 2010 J. Phys.: Conf. Ser. 241 012003
-
[1] Stone T, George N 1988 Appl. Opt. 27 2960
[2] Guo T, Li F, Chen J P, Fu X, Hu X T 2016 Opt. Lasers Eng. 82 41
[3] Coppola G, Di Caprio G, Gioffr M, Puglisi R, Balduzzi D, Galli A, Miccio L, Paturzo M, Grilli S, Finizio A, Ferraro P 2010 Opt. Lett. 35 3390
[4] Chen X G, Liu S Y, Zhang C W, Jiang H, Ma Z C, Sun T Y, Xu Z M 2014 Opt. Express 22 15165
[5] Rodenburg J M, Hurst A C, Cullis A G 2007 Ultramicroscopy 107 227
[6] Sun J S, Zhang Y Z, Chen Q, Zuo C 2016 Acta Opt. Sin. 36 1011005 (in Chinese) [孙佳嵩, 张玉珍, 陈钱, 左超 2016 光学学报 36 1011005]
[7] Thibault P, Dierolf M, Bunk O, Menzel A, Pfeiffer F 2009 Ultramicroscopy 109 338
[8] Hoppe W 1969 Acta Cryst. A 25 495
[9] Fienup J R 1982 Appl. Opt. 21 2758
[10] Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795
[11] Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256
[12] Pan X C, Veetil S P, Liu C, Lin Q, Zhu J Q 2013 Chin. Opt. Lett. 11 021103
[13] Maiden A M, Humphry M J, Zhang F C, Rodenburg J M 2011 J. Opt. Soc. Am. A 28 604
[14] Rodenburg J M, Hurst A C, Cullis A G, Dobson B R, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I 2007 Phys. Rev. Lett. 98 034801
[15] Claus D, Maiden A M, Zhang F C, Sweeney F G, Humphry M J, Schluesener H, Rodenburg J M 2012 Opt. Express 20 9911
[16] Liu X L, Pan Z, Wang Y L, Shi Y S 2015 Acta Phys. Sin. 64 234201 (in Chinese) [刘祥磊, 潘泽, 王雅丽, 史祎诗 2015 64 234201]
[17] Wang Y L, Li T, Gao Q K, Zhang S G, Shi Y S 2013 Opt. Eng. 52 091720
[18] Claus D, Robinson D J, Chetwynd D G, Shuo Y, Pike W T, Jos J D J, Rodenburg J M 2013 J. Opt. 15 035702
[19] Tao H, Veetil S P, Cheng J, Pan X C, Wang H Y, Liu C, Zhu J Q 2015 Appl. Opt. 54 1776
[20] Wang H Y, Liu C, Veetil S P, Pan X C, Zhu J Q 2014 Opt. Express 22 2159
[21] Wang Y L, Shi Y S, Li T, Gao Q K, Xiao J, Zhang S G 2013 Acta Phys. Sin. 62 064206 (in Chinese) [王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国 2013 62 064206]
[22] He F, Rodenburg J M, Maiden A M, Midgley P A 2011 Ultramicroscopy 111 1117
[23] Humphry M J, Kraus B, Hurst A C, Maiden A M, Rodenburg J M 2012 Nat. Commun. 3 730
[24] Rodenburg J M, Hurst A C, Maiden A M 2010 J. Phys.: Conf. Ser. 241 012003
计量
- 文章访问数: 6536
- PDF下载量: 372
- 被引次数: 0