搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种编码式宽带多功能反射屏

陈巍 高军 张广 曹祥玉 杨欢欢 郑月军

引用本文:
Citation:

一种编码式宽带多功能反射屏

陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军

A wideband coding reflective metasurface with multiple functionalities

Chen Wei, Gao Jun, Zhang Guang, Cao Xiang-Yu, Yang Huan-Huan, Zheng Yue-Jun
PDF
导出引用
  • 提出了一种可控的宽带多功能反射屏.通过将射频微机电系统技术与反射屏设计相结合,首先设计了可编码式工作的单元,该单元具有工作频带宽、损耗小、控制简单的特点.由该单元基于不同编码矩阵构成的反射屏可以实现不同的功能.文中展示了多功能反射屏的极化旋转和捷变散射场性能.仿真结果表明:设计的反射屏在8.913.2 GHz频段范围内极化转化率高达90%以上,且在8.913.1 GHz频段范围内可实现10 dB以上的雷达散射截面减缩.实测结果与仿真结果基本一致.
    A controllable wideband multifunctional reflective metasurface is presented. First of all, a polarization-rotating unit cell is proposed by combing micro-electromechanical system (MEMS) technology with reflective metasurface design. The proposed unit cell is characterized by wideband, low loss and controllable properties. Each unit cell is integrated with two MEMS switches. When the two switches operate in different states, the unit cell shows different responses to plane wave incidence, and the corresponding working states can be denoted by 0 or 1. It is worth noting that a 180 degree reflection phase difference is generated for the two working states. Then, the proposed unit cell is periodically arranged to construct a metasurface. Based on different coding matrixes, multiple functionalities can be obtained by using the proposed metasurface. When all the unit cells are controlled to operate in on- or off-state, polarization-rotating function is obtained. Besides, the agility scattering field performance is also presented by using chessboard and random codings. A series of equations is derived to reveal the relationship between reflection coefficient of the unit cell and radar cross section (RCS) reduction of the chessboard reflective surface, which is also verified by full-wave simulations. Finally, four prototypes consisting of 576-cells, which correspond to the all 0, all 1, chessboard and random coding, are fabricated and measured. The measured results demonstrate that the proposed reflective metasurface shows polarization-rotating performance in a frequency range of 8.9-13.2 GHz when all unit cells operate in 0 or 1 state. The measured results of the chessboard and random coding metasurface manifest remarkable RCS reduction compared with the same size metal plane. Good agreement between simulations and measurements is obtained. Owing to the ability to control polarization and beam shape of the reflected wave dynamically, the proposed reflective metasurface has potential applications in the field of intelligent stealth.
      Corresponding author: Gao Jun, gjgj9694@163.com;xiangyucaokdy@163.com ; Cao Xiang-Yu, gjgj9694@163.com;xiangyucaokdy@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271100, 61471389, 61501494, 61671464).
    [1]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [2]

    Lin B Q, Zhao S H, Wei W, Da X Y, Zheng Q R, Zhang H Y, Zhu M 2014 Chin. Phys. B 23 024201

    [3]

    Zhong X Q, Cheng K, Xiang A P 2013 Chin. Phys. B 22 034205

    [4]

    Zhong M 2013 Chin. Opt. Lett. 11 101601

    [5]

    Esmaeli S H, Sedighy S H 2016 Electron. Lett. 52 70

    [6]

    Zhao Y, Cao X Y, Gao J, Sun Y, Yang H H, Liu X, Zhou Y L, Han T, Chen W 2016 Sci. Rep. 6 23896

    [7]

    Li S J, Gao J, Cao X Y, Zhang Z, Zheng Y J, Zhang C 2015 Opt. Express 23 003523

    [8]

    Li S J, Gao J, Cao X Y, Zhao Y, Zhang Z, Liu H X 2014 IET Microw. Antennas Propag. 9 399

    [9]

    Liu Y, Hao Y W, Li K, Gong S X 2016 IEEE Anten. Wirel. Propag. Lett. 15 1028

    [10]

    Liu Y, Li K, Jia Y T, Hao Y W, Gong S X, Jay-Guo Y 2016 IEEE Trans. Antennas Propag. 64 326

    [11]

    Edalati A, Saraband K 2014 IEEE Trans. Antennas Propag. 62 747

    [12]

    Su P, Zhao Y J, Jia S L, Shi W W, Wang H L 2016 Sci. Rep. 6 20387

    [13]

    Jia Y T, Liu Y, Jay-Guo Y, Li K, Gong S X 2016 IEEE Trans. Antennas Propag. 64 179

    [14]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [15]

    Li S J, Cao X Y, Gao J, Zheng Q R, Zhao Y, Yang Q 2013 Acta Phys. Sin. 62 194101 (in Chinese) [李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群 2013 62 194101]

    [16]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P 2007 IEEE Trans. Antennas Propag. 55 3630

    [17]

    Zheng Y J, Gao J, Cao X Y, Yuan Z D, Yang H H 2015 IEEE Anten. Wirel. Propag. Lett. 14 1582

    [18]

    Cui T J, Qi M Q, Wang X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 218

    [19]

    Guclu C, Perruisseau-Carrier J, Civi O A 2012 IEEE Trans. Antennas Propag. 60 5451

    [20]

    Zhen W B, Huang Q A, Li F X 2001 J. Microwaves 17 87 (in Chinese) [郑惟彬, 黄庆安, 李拂晓 2001 微波学报 17 87]

    [21]

    Han J F, Cao X Y, Gao J, Li S J, Zhang C 2016 Acta Phys. Sin. 65 044201 (in Chinese) [韩江枫, 曹祥玉, 高军, 李思佳, 张晨 2016 65 044201]

    [22]

    Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M K, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692

    [23]

    Yang H H, Yang F, Xu S H, Li M K, Cao X Y, Gao J 2016 Acta Phys. Sin. 65 054102 (in Chinese) [杨欢欢, 杨帆, 许慎恒, 李懋坤, 曹祥玉, 高军 2016 65 054102]

  • [1]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [2]

    Lin B Q, Zhao S H, Wei W, Da X Y, Zheng Q R, Zhang H Y, Zhu M 2014 Chin. Phys. B 23 024201

    [3]

    Zhong X Q, Cheng K, Xiang A P 2013 Chin. Phys. B 22 034205

    [4]

    Zhong M 2013 Chin. Opt. Lett. 11 101601

    [5]

    Esmaeli S H, Sedighy S H 2016 Electron. Lett. 52 70

    [6]

    Zhao Y, Cao X Y, Gao J, Sun Y, Yang H H, Liu X, Zhou Y L, Han T, Chen W 2016 Sci. Rep. 6 23896

    [7]

    Li S J, Gao J, Cao X Y, Zhang Z, Zheng Y J, Zhang C 2015 Opt. Express 23 003523

    [8]

    Li S J, Gao J, Cao X Y, Zhao Y, Zhang Z, Liu H X 2014 IET Microw. Antennas Propag. 9 399

    [9]

    Liu Y, Hao Y W, Li K, Gong S X 2016 IEEE Anten. Wirel. Propag. Lett. 15 1028

    [10]

    Liu Y, Li K, Jia Y T, Hao Y W, Gong S X, Jay-Guo Y 2016 IEEE Trans. Antennas Propag. 64 326

    [11]

    Edalati A, Saraband K 2014 IEEE Trans. Antennas Propag. 62 747

    [12]

    Su P, Zhao Y J, Jia S L, Shi W W, Wang H L 2016 Sci. Rep. 6 20387

    [13]

    Jia Y T, Liu Y, Jay-Guo Y, Li K, Gong S X 2016 IEEE Trans. Antennas Propag. 64 179

    [14]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [15]

    Li S J, Cao X Y, Gao J, Zheng Q R, Zhao Y, Yang Q 2013 Acta Phys. Sin. 62 194101 (in Chinese) [李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群 2013 62 194101]

    [16]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P 2007 IEEE Trans. Antennas Propag. 55 3630

    [17]

    Zheng Y J, Gao J, Cao X Y, Yuan Z D, Yang H H 2015 IEEE Anten. Wirel. Propag. Lett. 14 1582

    [18]

    Cui T J, Qi M Q, Wang X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 218

    [19]

    Guclu C, Perruisseau-Carrier J, Civi O A 2012 IEEE Trans. Antennas Propag. 60 5451

    [20]

    Zhen W B, Huang Q A, Li F X 2001 J. Microwaves 17 87 (in Chinese) [郑惟彬, 黄庆安, 李拂晓 2001 微波学报 17 87]

    [21]

    Han J F, Cao X Y, Gao J, Li S J, Zhang C 2016 Acta Phys. Sin. 65 044201 (in Chinese) [韩江枫, 曹祥玉, 高军, 李思佳, 张晨 2016 65 044201]

    [22]

    Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M K, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692

    [23]

    Yang H H, Yang F, Xu S H, Li M K, Cao X Y, Gao J 2016 Acta Phys. Sin. 65 054102 (in Chinese) [杨欢欢, 杨帆, 许慎恒, 李懋坤, 曹祥玉, 高军 2016 65 054102]

  • [1] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体.  , 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254
    [2] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体.  , 2021, (): . doi: 10.7498/aps.70.20211254
    [3] 郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐. 一种编码式低雷达散射截面超表面天线阵列设计.  , 2020, 69(24): 244101. doi: 10.7498/aps.69.20200978
    [4] 于惠存, 曹祥玉, 高军, 杨欢欢, 韩江枫, 朱学文, 李桐. 一种宽带可重构反射型极化旋转表面.  , 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041
    [5] 解万财, 黄素娟, 邵蔚, 朱福全, 陈木生. 基于混合光模式阵列的自由空间编码通信.  , 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [6] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计.  , 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [7] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计.  , 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [8] 韩江枫, 曹祥玉, 高军, 李思佳, 张晨. 一种基于超材料的宽带、反射型90极化旋转体设计.  , 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [9] 梁文耀, 张玉霞, 陈武喝. 低对称性光子晶体超宽带全角自准直传输的机理研究.  , 2015, 64(6): 064209. doi: 10.7498/aps.64.064209
    [10] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面.  , 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [11] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射.  , 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [12] 郑月军, 高军, 曹祥玉, 李思佳, 杨欢欢, 李文强, 赵一, 刘红喜. 覆盖X和Ku波段的低雷达散射截面人工磁导体反射屏.  , 2015, 64(2): 024219. doi: 10.7498/aps.64.024219
    [13] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体.  , 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [14] 赵一, 曹祥玉, 张迪, 姚旭, 李思佳, 杨欢欢, 李文强. 一种兼有高增益和宽带低散射特征的波导缝隙天线设计.  , 2014, 63(3): 034101. doi: 10.7498/aps.63.034101
    [15] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线.  , 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [16] 鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐. 宽带雷达散射截面减缩人工磁导体复合结构.  , 2013, 62(3): 034206. doi: 10.7498/aps.62.034206
    [17] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体.  , 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [18] 赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢. 人工磁导体正交布阵的宽带低雷达截面反射屏.  , 2013, 62(15): 154204. doi: 10.7498/aps.62.154204
    [19] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究.  , 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [20] 王晓慧, 吕志伟, 林殿阳, 王 超, 汤秀章, 龚 坤, 单玉生. 宽带KrF激光抽运的受激布里渊散射反射率研究.  , 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
计量
  • 文章访问数:  6640
  • PDF下载量:  304
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-17
  • 修回日期:  2016-11-01
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map