搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究

胡洁琼 谢明 陈家林 刘满门 陈永泰 王松 王塞北 李爱坤

引用本文:
Citation:

Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究

胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤

First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases

Hu Jie-Qiong, Xie Ming, Chen Jia-Lin, Liu Man-Men, Chen Yong-Tai, Wang Song, Wang Sai-Bei, Li Ai-Kun
PDF
导出引用
  • 采用第一性原理的密度泛函理论平面波赝势法,通过广义梯度近似研究了Ti3AC2相(A=Si,Sn,Al,Ge)的相结构、能量、电子结构和弹性性质.首先对六方晶相结构的Ti3AC2(A=Si,Sn,Al,Ge)四个相进行几何优化,对其能带结构、总态密度、分态密度和电荷密度分布以及弹性性质进行研究,并计算各相的内聚能与形成能.计算结果表明:Ti3GeC2较其他三相稳定,Ti3AlC2的形成能最低,说明Ti3AlC2较Ti3SiC2,Ti3SnC2和Ti3GeC2更易生成;Ti3AC2(A=Si,Sn,Al,Ge)各相在费米能级处的电子态密度较高,材料表现出较强的金属性,同时各相的导电性为各向异性.Ti3AC2(A=Si,Sn,Al,Ge)各相的导电性主要由Ti的3d电子决定,A(A=Si,Sn,Al,Ge)的p态电子和C的2p态电子也有少量贡献.决定材料电学性质的主要是Ti的3d,A的p和C的2p态电子的p-d电子轨道杂化,而p-d电子轨道杂化成键则使材料具有比较稳定的结构;对Ti3AC2相(A=Si,Sn,Al,Ge)弹性性质的研究表明Ti3AlC2的原子间结合力较弱,而Ti3GeC2的原子间结合力相对较强,材料的强度较大.
    A first-principles plane-wave pseudo potential method based on the density functional theory is used to investigate the phase structures, energies, electronic structures and elastic properties of Ti3AC2 (A=Si, Sn, Al, Ge) phases. In this paper, Ti3AC2 (A=Si, Sn, Al, Ge) crystal structures are first optimized, then the band structures, total and part density of states,charge density distributions and elastic properties of these compounds are analyzed, and the cohesive energies and formation energy of these phases are also calculated. The results show that the Ti3GeC2 is more stable than other compounds, the formation energy of Ti3AlC2 is the lowest in these compounds, which indicates that Ti3AlC2 is easier to generate; Ti3AC2 (A =Si, Sn, Al, Ge) each have a higher density of states at Fermi level, which shows the strong metallicity, meanwhile, the electrical conductivity of each phase is anisotropic. The DOS at the Fermi energy is mainly from the Ti-d electrons, which should be involved in the conduction properties although d electrons are considered to be inefficient conductors. The lowest valence bands are formed by the C-s states with a small mixture of Ti-p+d, and A-s+p states. The electrical properties are mainly decided by the p-d hybridizations between 3d electrons in Ti and the p electrons in A (A =Si, Sn, Al, Ge) and 2p electrons in C, and the strong hybridization of p-d states make the materials have stable structures. It should be noted that the calculated bond length of Ti-Ge is shorter than those of Ti-A (A=Si, Sn, Al) bonds. This implies that the Ti-Ge bond is stronger than Ti-A (A=Si, Sn, Al) bonds. Furthermore, the Fermi level of Ti3GeC2 is relatively low, which also indicates the relatively high stability of Ti3GeC2. The charge density provides a measure of the strength of the ionic bond, so that Ti3GeC2 and Ti3SiC2 have stronger ionic bonds than Ti3SnC2 and Ti3AlC2. The strong M-A bonds in Ti3GeC2 lead to a decreasing and c lattice parameter value increasing. The spherical shape of X represents more like an ionic bond. The z-directional localized shapes of A each is more like a covalent bond. The covalent bonds of A elements each are localized along the z direction so that they affect mostly the c lattice parameter; the calculated elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases show that the atomic binding force of Ti3AlC2 is weaker than those of other three phases, while the atomic binding force of Ti3GeC2 is relatively strong, which makes the strength of Ti3GeC2 quite high.
      通信作者: 谢明, joanr8210@163.com
    • 基金项目: 国家自然科学基金(批准号:U1302272,51267007,51461023)、云南省院所技术开发专项(批准号:2013DC016)和稀贵金属材料协同创新基金项目(批准号:2014XT02)资助的课题.
      Corresponding author: Xie Ming, joanr8210@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1302272, 51267007, 51461023), the Institutes Special Technology Development Project of Yunnan, China (Grant No. 2013DC016), and the Fund of the Collaborative Innovation Center of Rare and Precious Metals Advanced Materials, China (Grant No. 2014XT02).
    [1]

    Liu Y, Zhang J B, Li Y, Xiao X P, Chen H M 2015Mater.Rev. 29 517(in Chinese)[刘耀, 张建波, 李勇, 肖翔鹏, 陈辉明2015材料导报29 517]

    [2]

    Sezgin A, Aynur T, Yasemin O C 2016Solid State Sci. 53 44

    [3]

    Sitaram A, Ridwan S, Li Z O, Wai Y C 2015J.Eur.Ceram.Soc. 35 3219

    [4]

    Jiao Z Y, Ma S H, Wang T X 2015Solid State Sci. 39 97

    [5]

    Marcus H, Rolf G, Anneka V, Henry R, Peter S 2014Surf.Coat.Technol. 257 286

    [6]

    Navid A, Mina S H, Hamid R B, Naser E 2016Int.J.Refract.Met.Hard Mater. 61 67

    [7]

    Jeitschko W, Nowotny H, Die K Y 1967Monatsh.Chem. 98 329

    [8]

    Pietzka M A, Schuster J C 1994J.Phase Equilibria 15 392

    [9]

    Barsoum M W 2000Prog.Solid State Chem. 28 201

    [10]

    Benoit C, Ellen H, Nikhil K, Dominique V, Sylvain D 2005Powder Technol. 157 92

    [11]

    Payne M C, Clarke L J 1992Comput.Phys.Commun. 72 14

    [12]

    Segall M D, Lindan P J D, Probert M J 2002J.Phys.Condens.Matter 14 2717

    [13]

    Medvedeva N I, Freeman A J 2008Scr.Mater. 58 671

    [14]

    Yue L B, Xiao D H, Yue S, Chun C Z, Ming W L, Li P S 2010Solid State Sci. 12 1220

    [15]

    Jing R X, Chen X W, Teng F Y, Shu Y K, Jian M X, Yu G Y 2013Nucl.Instrum.Methods Phys.Res.Sect.B 304 27

    [16]

    Shou X C, Wen X F, Hai Q H, Gui Q Z, Zeng T L, Zi Z G 2011J.Solid State Chem. 184 786

    [17]

    Stojkovi M, Koteski V, Belovevi C, Čavor J 2008Phys.Rev.B 77 193

    [18]

    Xiao J K, Hua K, Chun B Z, Peter R 2015Chem.Phys. 446 1

    [19]

    Zhang H Z, Wang S Q 2007Acta Mater. 55 4645

    [20]

    Bai Y L, He X D, Sun Y, Zhu C C, Li M W, Shi L P 2010Solid State Sci. 12 1220

    [21]

    Sin'ko G V, Smirnov N A 2002J.Phys.Condens.Matter 14 6989

    [22]

    Neumann G S, Stixrude L 1999Phys.Rev.B 60 791

    [23]

    Xiao M Y, Hua H, Yu H Z, Ling Y, Pei D H 2014Comput.Mater.Sci. 84 374

    [24]

    Liu Y, Hu W C, Li D J, Zeng X Q, Xu C S, Yang X J 2012Intermetallics 31 257

    [25]

    Hu W C, Liu Y, Li D J, Zeng X Q, Xu C S 2013Physica B 427 85

    [26]

    Fan K M, Yang L, Sun Q Q, Dai Y Y, Peng S M, Long X G, Zhou X S, Zu X T 2013Acta Phys.Sin. 62 116201(in Chinese)[范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛2013 62 116201]

  • [1]

    Liu Y, Zhang J B, Li Y, Xiao X P, Chen H M 2015Mater.Rev. 29 517(in Chinese)[刘耀, 张建波, 李勇, 肖翔鹏, 陈辉明2015材料导报29 517]

    [2]

    Sezgin A, Aynur T, Yasemin O C 2016Solid State Sci. 53 44

    [3]

    Sitaram A, Ridwan S, Li Z O, Wai Y C 2015J.Eur.Ceram.Soc. 35 3219

    [4]

    Jiao Z Y, Ma S H, Wang T X 2015Solid State Sci. 39 97

    [5]

    Marcus H, Rolf G, Anneka V, Henry R, Peter S 2014Surf.Coat.Technol. 257 286

    [6]

    Navid A, Mina S H, Hamid R B, Naser E 2016Int.J.Refract.Met.Hard Mater. 61 67

    [7]

    Jeitschko W, Nowotny H, Die K Y 1967Monatsh.Chem. 98 329

    [8]

    Pietzka M A, Schuster J C 1994J.Phase Equilibria 15 392

    [9]

    Barsoum M W 2000Prog.Solid State Chem. 28 201

    [10]

    Benoit C, Ellen H, Nikhil K, Dominique V, Sylvain D 2005Powder Technol. 157 92

    [11]

    Payne M C, Clarke L J 1992Comput.Phys.Commun. 72 14

    [12]

    Segall M D, Lindan P J D, Probert M J 2002J.Phys.Condens.Matter 14 2717

    [13]

    Medvedeva N I, Freeman A J 2008Scr.Mater. 58 671

    [14]

    Yue L B, Xiao D H, Yue S, Chun C Z, Ming W L, Li P S 2010Solid State Sci. 12 1220

    [15]

    Jing R X, Chen X W, Teng F Y, Shu Y K, Jian M X, Yu G Y 2013Nucl.Instrum.Methods Phys.Res.Sect.B 304 27

    [16]

    Shou X C, Wen X F, Hai Q H, Gui Q Z, Zeng T L, Zi Z G 2011J.Solid State Chem. 184 786

    [17]

    Stojkovi M, Koteski V, Belovevi C, Čavor J 2008Phys.Rev.B 77 193

    [18]

    Xiao J K, Hua K, Chun B Z, Peter R 2015Chem.Phys. 446 1

    [19]

    Zhang H Z, Wang S Q 2007Acta Mater. 55 4645

    [20]

    Bai Y L, He X D, Sun Y, Zhu C C, Li M W, Shi L P 2010Solid State Sci. 12 1220

    [21]

    Sin'ko G V, Smirnov N A 2002J.Phys.Condens.Matter 14 6989

    [22]

    Neumann G S, Stixrude L 1999Phys.Rev.B 60 791

    [23]

    Xiao M Y, Hua H, Yu H Z, Ling Y, Pei D H 2014Comput.Mater.Sci. 84 374

    [24]

    Liu Y, Hu W C, Li D J, Zeng X Q, Xu C S, Yang X J 2012Intermetallics 31 257

    [25]

    Hu W C, Liu Y, Li D J, Zeng X Q, Xu C S 2013Physica B 427 85

    [26]

    Fan K M, Yang L, Sun Q Q, Dai Y Y, Peng S M, Long X G, Zhou X S, Zu X T 2013Acta Phys.Sin. 62 116201(in Chinese)[范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛2013 62 116201]

  • [1] 吕常伟, 王臣菊, 顾建兵. 高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究.  , 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [2] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究.  , 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [3] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究.  , 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [4] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究.  , 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [5] 陈俊俊, 段济正, 张学智, 姜欣, 段文山. 杂质对Nb2GeC性质影响的第一性原理研究.  , 2015, 64(23): 238101. doi: 10.7498/aps.64.238101
    [6] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算.  , 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [7] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究.  , 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [8] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究.  , 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [9] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究.  , 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [10] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算.  , 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [11] 范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛. 六角相ErAx (A=H, He)体系弹性性质的第一性原理研究.  , 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [12] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质.  , 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [13] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究.  , 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [14] 苏锐, 龙瑶, 姜胜利, 何捷, 陈军. 外部压力下β相奥克托金晶体弹性性质变化的第一性原理研究.  , 2012, 61(20): 206201. doi: 10.7498/aps.61.206201
    [15] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究.  , 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [16] 汝强, 胡社军, 赵灵智. LixFePO4(x=0.0, 0.75, 1.0)电子结构与弹性性质的第一性原理研究.  , 2011, 60(3): 036301. doi: 10.7498/aps.60.036301
    [17] 陈海川, 杨利君. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算.  , 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [18] 杨天兴, 成强, 许红斌, 王渊旭. 几种三元过渡金属碳化物弹性及电子结构的第一性原理研究.  , 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [19] 侯榆青, 张小东, 姜振益. 第一性原理计算MAlH4(M=Na, K)的结构和弹性性质.  , 2010, 59(8): 5667-5671. doi: 10.7498/aps.59.5667
    [20] 许红斌, 王渊旭. 过渡金属Tc及其氮化物TcN,TcN2,TcN3与TcN4低压缩性的第一性原理计算研究.  , 2009, 58(8): 5645-5652. doi: 10.7498/aps.58.5645
计量
  • 文章访问数:  7146
  • PDF下载量:  460
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-09
  • 修回日期:  2016-12-01
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map