搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维材料中的氢隧穿研究进展

辛延波 胡琪 牛栋华 郑晓虎 时洪亮 王玫 肖志松 黄安平 Zhang Zhi-Bin

引用本文:
Citation:

二维材料中的氢隧穿研究进展

辛延波, 胡琪, 牛栋华, 郑晓虎, 时洪亮, 王玫, 肖志松, 黄安平, Zhang Zhi-Bin

Research progress of hydrogen tunneling in two-dimensional materials

Xin Yan-Bo, Hu Qi, Niu Dong-Hua, Zheng Xiao-Hu, Shi Hong-Liang, Wang Mei, Xiao Zhi-Song, Huang An-Ping, Zhang Zhi-Bin
PDF
导出引用
  • 石墨烯、石墨烯衍生物以及类石墨烯材料通常具有致密的网状晶格结构,研究表明这类材料对分子、原子和离子具有很强的阻挡性.然而对于不同形态的氢粒子(原子、离子、氢气分子)是否能够隧穿二维材料仍然存在很多科学争议,并已成为目前科学研究的一个热点.本文综述了氢隧穿二维材料的研究进展,介绍了不同结构氢粒子隧穿二维材料体系的特点,阐述了氢粒子隧穿不同质量石墨烯和类石墨烯材料时所需要逾越的势垒高度,并对比了其跃迁的难度.讨论了从二维材料本身出发,降低氢隧穿势垒大小和改变环境对氢隧穿过程的影响,实现氢粒子隧穿二维材料.最后展望了氢隧穿二维材料在实际应用中可能存在的问题及未来的研究方向.
    One-atom-thick material such as graphene, graphene derivatives and graphene-like materials, usually has a dense network lattice structure and therefore dense distribution of electronic clouds in the atomic plane. This unique structure makes it have great significance in both basic research and practical applications. Studies have shown that molecules, atoms and ions are very difficult to permeate through these above-mentioned two-dimensional materials. Theoretical investigations demonstrate that even hydrogen, the smallest in atoms, is expected to take billions of years to penetrate through the dense electronic cloud of graphene. Therefore, it is generally considered that one-atom-thin materialis impermeable for hydrogen. However, recent experimental results have shown that the hydrogen atoms can tunnel through graphene and monolayer hexagonal boron nitride at room temperature. The existence of defects in one-atomthin material can also effectively reduce the barrier height of the hydrogen tunneling through graphene. Controversy exists about whether hydrogen particles such as atoms, ions or hydrogen molecules can tunnel through two-dimensional materials, and it has been one of the popular topics in the fields of two-dimensional materials. In this paper, the recent research progressof hydrogen tunneling through two-dimensional materials is reviewed. The characteristics of hydrogen isotopes tunneling through different two-dimensional materials are introduced. Barrier heights of hydrogen tunneling through different graphene and graphene-like materials are discussed and the difficulties in its transition are compared. Hydrogen cannot tunnel through the monolayer molybdenum disulfide, only a little small number of hydrogen atoms can tunnel hrough graphene and hexagonal boron nitride, while hydrogen is relatively easy to tunnel through silicene and phosphorene. The introduction of atomic defects or some oxygen-containing functional groups into the two-dimensional material is discussed, which can effectively reduce the barrier height of the hydrogen tunneling barrier. By adding the catalyst and adjusting the temperature and humidity of the tunneling environment, the hydrogen tunneling ability can be enhanced and the hydrogen particles tunneling through the two-dimensional material can be realized. Finally, the applications of hydrogen tunneling through two-dimensional materials in ion-separation membranes, fuel cells and hydrogen storage materials are summarized. The potential applications of hydrogen permeable functional thin film materials, lithium ion battery electrode materials and nano-channel ions in low energy transmission are prospected. The exact mechanism of hydrogen tunneling through two-dimensional material is yet to be unravelled. In order to promote these applications and to realize large-scale production and precision machining of these two-dimensional materials, an in-depth understanding of the fundamental questions of the hydrogen tunneling mechanism is needed. Further studies are needed to predict the tunneling process quantitatively and to understand the effects of catalyst and the influences of chemical environments.
      通信作者: 黄安平, aphuang@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51372008,11574017,11574021,11604007)和北京市科学技术委员会专项计划(批准号:Z161100000216149)资助的课题.
      Corresponding author: Huang An-Ping, aphuang@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51372008, 11574017, 11574021, 11604007) and the Special Foundation of Beijing Municipal Science Technology Commission, China (Grant No. Z161100000216149).
    [1]

    Li H, Song Z N, Zhang X J, Huang Y, Li S G, Mao Y T, Ploehn H J, Bao Y, Yu M 2013Science 342 95

    [2]

    Bayer T, Bishop S R, Nishihara M, Sasaki K, Lyth S M 2014J.Power Sources 272 239

    [3]

    Forero A B, Ponciano J A C, Bott I S 2014Mater.Corros. 65 531

    [4]

    Wang B, Feng Y H, Wang Q S, Zhang W, Zhang L N, Ma J W, Zhang H R, Yu G H, Wang G Q 2016Acta Phys.Sin. 65 098101(in Chinese)[王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强2016 65 098101]

    [5]

    Li X S, Colombo L, Ruoff R S 2016Adv.Mater. 28 6247

    [6]

    Dong Y F, He D W, Wang Y S, Xu H T, Gong Z 2016Acta Phys.Sin. 65 128101(in Chinese)[董艳芳, 何大伟, 王永生, 许海腾, 巩哲2016 65 128101]

    [7]

    Achtyl J L, Unocic R R, Xu L, Cai Y, Raju M, Zhang W, Sacci R L, Vlassiouk I V, Fulvio P F, Ganesh P, Wesolowski D J, Dai S, Van D A C, Neurock M, Geiger F M 2015Nat.Commun. 6 6539

    [8]

    Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L 2008Nano Lett. 8 2458

    [9]

    Leenaerts O, Partoens B, Peeters F M 2008Appl.Phys.Lett. 93 193107

    [10]

    Wang W L, Kaxiras E 2010New J.Phys. 12 125012

    [11]

    Koenig S P, Wang L, Pellegrino J, Bunch J S 2012Nature Nanotechnol. 7 728

    [12]

    Paul D R 2012Science 335 413

    [13]

    Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R 2014Science 343 752

    [14]

    Miao M, Nardelli M B, Wang Q, Liu Y H 2013PCCP 15 16132

    [15]

    Hu S, Lozada-Hidalgo M, Wang F C, Mishchenko A, Schedin F, Nair R R, Hill E W, Boukhvalov D W, Katsnelson M I, Dryfe R A W, Grigorieva I V, Wu H A, Geim A K 2014Nature 516 227

    [16]

    Lozada-Hidalgo M, Hu S, Marshall O, Mishchenko A, Grigorenko A N, Dryfe R A W, Radha B, Grigorieva I V, Geim A K 2016Science 351 68

    [17]

    Hu S 2014Ph.D.Dissertation(City of Manchester:The University of Manchester)

    [18]

    Du H L, Li J Y, Zhang J, Su G, Li X Y, Zhao Y L 2011J.Phys.Chem.C 115 23261

    [19]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004Science 306 666

    [20]

    Mauritz K A, Moore R B 2004Chem.Rev. 104 4535

    [21]

    Xie D G, Wang Z J, Sun J, Li J, Ma E, Shan Z W 2015Nature Mater. 14 899

    [22]

    Poltavsky I, Zheng L M, Mortazavi M, Tkatchenko A https://arxiv.org/abs/1605.06341[2016-10-28]

    [23]

    Gao W, Wu G, Janicke M T, Cullen D A, Mukundan R, Baldwin J K, Brosha E L, Galande C, Ajayan P M, More K L, Dattelbaum A M, Zelenay P 2014Angew.Chem.Int.Ed. 53 3588

    [24]

    Huang X Q, Lin C F, Yin X L, Zhao R G, Wang E G, Hu Z H 2014Acta Phys.Sin. 63 197301(in Chinese)[黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海2014 63 197301]

    [25]

    Miura Y, Kasai H, Dio W A, Nakanishi H, Sugimoto T 2003J.Phys.Soc.Jpn. 72 995

    [26]

    Seel M, Pandey R 20162D Materials 3 025004

    [27]

    Poltavsky I, Tkatchenko A 2016Chem.Sci. 7 1368

    [28]

    Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K 2012Science 335 442

    [29]

    Celebi K, Buchheim J, Wyss R M, Droudian A, Gasser P, Shorubalko I, Kye J I, Lee C, Park H G 2014Science 344 289

    [30]

    Su Y, Kravets V G, Wong S L, Waters J, Geim A K, Nair R R 2014Nat.Commun. 5 4843

    [31]

    O'Hern S C, Jang D, Bose S, Idrobo J C, Song Y, Laoui T, Kong J, Karnik R 2015Nano Lett. 15 3254

    [32]

    Hatakeyama K, Karim M R, Ogata C, Tateishi H, Funatsu A, Taniguchi T, Koinuma M, Hayami S, Matsumoto Y 2014Angew.Chem.Int.Ed. 126 7117

    [33]

    Hatakeyama K, Tateishi H, Taniguchi T, Koinuma M, Kida T, Hayami S, Yokoi H, Matsumoto Y 2014Chem.Mater. 26 5598

    [34]

    He G W, Chang C Y, Xu M Z, Hu S, Li L Q, Zhao J, Li Z, Li Z Y, Yin Y H, Gang M Y, Wu H, Yang X L, Griver M D, Jiang Z Y 2015Adv.Funct.Mater. 25 7502

    [35]

    Ravikumar, Scott K 2012Chem.Commun. 48 5584

    [36]

    Shao J J, Raidongia K, Koltonow A R, Huang J X 2015Nat.Commun. 6 7602

    [37]

    Hatakeyama K, Karim M R, Ogata C, Tateishi H, Taniguchi T, Koinuma M, Hayami S, Matsumoto Y 2014Chem.Commun. 50 14527

    [38]

    Tahat A, MartJ 2014Phys.Rev.E 89 052130

    [39]

    Kenneth B, Wiberg 1955Chem.Rev. 55 713

    [40]

    Jiang D E, Cooper V R, Dai S 2009Nano Lett. 9 4019

    [41]

    Radha B, Esfandiar A, Wang F C, Rooney A P, Gopinadhan K, Keerthi A, Mishchenko A, Janardanan A, Blake P, Fumagalli L, Lozada-hidalgo M, Gara S, Haigh S J, Grigorieva I V, Geim A K 2016Nature 538 222

    [42]

    Pan R, Fan X L, Luo Z F, An Y R 2016Comput.Mater.Sci. 124 106

    [43]

    Zhao Y C, Dai Z H, Sui P F, Zhang X L 2013Acta Phys.Sin. 62 137301(in Chinese)[赵银昌, 戴振宏, 隋鹏飞, 张晓玲2013 62 137301]

    [44]

    Banerjee P, Pathak B, Ahuja R, Das G P 2016Int.J.Hydrogen Energy 41 14437

    [45]

    Tanabe T 2013J.Nucl.Mater. 438 S19

    [46]

    Krauss W, Konys J, Holstein N, Zimmermann H 2011J.Nucl.Mater. 417 1233

    [47]

    Wang Z, Chen T, Chen W, Chang K, Ma L, Huang G, Chen D, Lee J 2013J.Mater.Chem.A 1 2202

    [48]

    Chen Y N, Fu K, Zhu S, Luo W, Wang Y B, Li Y J, Hitz E M, Yao Y G, Dai J Q, Wan J D, Danner V A, Li T, Hu L 2016Nano Lett. 16 3616

    [49]

    Zheng X H, Gao L, Yao Q Z, Li Q Y, Zhang M, Xie X M, Qiao S, Wang G, Ma T B, Di Z F, Luo J B, Wang X 2016Nat.Commun. 7 13204

  • [1]

    Li H, Song Z N, Zhang X J, Huang Y, Li S G, Mao Y T, Ploehn H J, Bao Y, Yu M 2013Science 342 95

    [2]

    Bayer T, Bishop S R, Nishihara M, Sasaki K, Lyth S M 2014J.Power Sources 272 239

    [3]

    Forero A B, Ponciano J A C, Bott I S 2014Mater.Corros. 65 531

    [4]

    Wang B, Feng Y H, Wang Q S, Zhang W, Zhang L N, Ma J W, Zhang H R, Yu G H, Wang G Q 2016Acta Phys.Sin. 65 098101(in Chinese)[王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强2016 65 098101]

    [5]

    Li X S, Colombo L, Ruoff R S 2016Adv.Mater. 28 6247

    [6]

    Dong Y F, He D W, Wang Y S, Xu H T, Gong Z 2016Acta Phys.Sin. 65 128101(in Chinese)[董艳芳, 何大伟, 王永生, 许海腾, 巩哲2016 65 128101]

    [7]

    Achtyl J L, Unocic R R, Xu L, Cai Y, Raju M, Zhang W, Sacci R L, Vlassiouk I V, Fulvio P F, Ganesh P, Wesolowski D J, Dai S, Van D A C, Neurock M, Geiger F M 2015Nat.Commun. 6 6539

    [8]

    Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L 2008Nano Lett. 8 2458

    [9]

    Leenaerts O, Partoens B, Peeters F M 2008Appl.Phys.Lett. 93 193107

    [10]

    Wang W L, Kaxiras E 2010New J.Phys. 12 125012

    [11]

    Koenig S P, Wang L, Pellegrino J, Bunch J S 2012Nature Nanotechnol. 7 728

    [12]

    Paul D R 2012Science 335 413

    [13]

    Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R 2014Science 343 752

    [14]

    Miao M, Nardelli M B, Wang Q, Liu Y H 2013PCCP 15 16132

    [15]

    Hu S, Lozada-Hidalgo M, Wang F C, Mishchenko A, Schedin F, Nair R R, Hill E W, Boukhvalov D W, Katsnelson M I, Dryfe R A W, Grigorieva I V, Wu H A, Geim A K 2014Nature 516 227

    [16]

    Lozada-Hidalgo M, Hu S, Marshall O, Mishchenko A, Grigorenko A N, Dryfe R A W, Radha B, Grigorieva I V, Geim A K 2016Science 351 68

    [17]

    Hu S 2014Ph.D.Dissertation(City of Manchester:The University of Manchester)

    [18]

    Du H L, Li J Y, Zhang J, Su G, Li X Y, Zhao Y L 2011J.Phys.Chem.C 115 23261

    [19]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004Science 306 666

    [20]

    Mauritz K A, Moore R B 2004Chem.Rev. 104 4535

    [21]

    Xie D G, Wang Z J, Sun J, Li J, Ma E, Shan Z W 2015Nature Mater. 14 899

    [22]

    Poltavsky I, Zheng L M, Mortazavi M, Tkatchenko A https://arxiv.org/abs/1605.06341[2016-10-28]

    [23]

    Gao W, Wu G, Janicke M T, Cullen D A, Mukundan R, Baldwin J K, Brosha E L, Galande C, Ajayan P M, More K L, Dattelbaum A M, Zelenay P 2014Angew.Chem.Int.Ed. 53 3588

    [24]

    Huang X Q, Lin C F, Yin X L, Zhao R G, Wang E G, Hu Z H 2014Acta Phys.Sin. 63 197301(in Chinese)[黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海2014 63 197301]

    [25]

    Miura Y, Kasai H, Dio W A, Nakanishi H, Sugimoto T 2003J.Phys.Soc.Jpn. 72 995

    [26]

    Seel M, Pandey R 20162D Materials 3 025004

    [27]

    Poltavsky I, Tkatchenko A 2016Chem.Sci. 7 1368

    [28]

    Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K 2012Science 335 442

    [29]

    Celebi K, Buchheim J, Wyss R M, Droudian A, Gasser P, Shorubalko I, Kye J I, Lee C, Park H G 2014Science 344 289

    [30]

    Su Y, Kravets V G, Wong S L, Waters J, Geim A K, Nair R R 2014Nat.Commun. 5 4843

    [31]

    O'Hern S C, Jang D, Bose S, Idrobo J C, Song Y, Laoui T, Kong J, Karnik R 2015Nano Lett. 15 3254

    [32]

    Hatakeyama K, Karim M R, Ogata C, Tateishi H, Funatsu A, Taniguchi T, Koinuma M, Hayami S, Matsumoto Y 2014Angew.Chem.Int.Ed. 126 7117

    [33]

    Hatakeyama K, Tateishi H, Taniguchi T, Koinuma M, Kida T, Hayami S, Yokoi H, Matsumoto Y 2014Chem.Mater. 26 5598

    [34]

    He G W, Chang C Y, Xu M Z, Hu S, Li L Q, Zhao J, Li Z, Li Z Y, Yin Y H, Gang M Y, Wu H, Yang X L, Griver M D, Jiang Z Y 2015Adv.Funct.Mater. 25 7502

    [35]

    Ravikumar, Scott K 2012Chem.Commun. 48 5584

    [36]

    Shao J J, Raidongia K, Koltonow A R, Huang J X 2015Nat.Commun. 6 7602

    [37]

    Hatakeyama K, Karim M R, Ogata C, Tateishi H, Taniguchi T, Koinuma M, Hayami S, Matsumoto Y 2014Chem.Commun. 50 14527

    [38]

    Tahat A, MartJ 2014Phys.Rev.E 89 052130

    [39]

    Kenneth B, Wiberg 1955Chem.Rev. 55 713

    [40]

    Jiang D E, Cooper V R, Dai S 2009Nano Lett. 9 4019

    [41]

    Radha B, Esfandiar A, Wang F C, Rooney A P, Gopinadhan K, Keerthi A, Mishchenko A, Janardanan A, Blake P, Fumagalli L, Lozada-hidalgo M, Gara S, Haigh S J, Grigorieva I V, Geim A K 2016Nature 538 222

    [42]

    Pan R, Fan X L, Luo Z F, An Y R 2016Comput.Mater.Sci. 124 106

    [43]

    Zhao Y C, Dai Z H, Sui P F, Zhang X L 2013Acta Phys.Sin. 62 137301(in Chinese)[赵银昌, 戴振宏, 隋鹏飞, 张晓玲2013 62 137301]

    [44]

    Banerjee P, Pathak B, Ahuja R, Das G P 2016Int.J.Hydrogen Energy 41 14437

    [45]

    Tanabe T 2013J.Nucl.Mater. 438 S19

    [46]

    Krauss W, Konys J, Holstein N, Zimmermann H 2011J.Nucl.Mater. 417 1233

    [47]

    Wang Z, Chen T, Chen W, Chang K, Ma L, Huang G, Chen D, Lee J 2013J.Mater.Chem.A 1 2202

    [48]

    Chen Y N, Fu K, Zhu S, Luo W, Wang Y B, Li Y J, Hitz E M, Yao Y G, Dai J Q, Wan J D, Danner V A, Li T, Hu L 2016Nano Lett. 16 3616

    [49]

    Zheng X H, Gao L, Yao Q Z, Li Q Y, Zhang M, Xie X M, Qiao S, Wang G, Ma T B, Di Z F, Luo J B, Wang X 2016Nat.Commun. 7 13204

  • [1] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件.  , 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] 陈晓娟, 徐康, 张秀, 刘海云, 熊启华. 二维材料体光伏效应研究进展.  , 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [3] 刘宁, 刘肯, 朱志宏. 集成二维材料非线性光学特性研究进展.  , 2023, 72(17): 174202. doi: 10.7498/aps.72.20230729
    [4] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展.  , 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [5] 鲍昌华, 范本澍, 汤沛哲, 段文晖, 周树云. 量子材料的弗洛凯调控.  , 2023, 72(23): 234202. doi: 10.7498/aps.72.20231423
    [6] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质.  , 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [7] 祝裕捷, 蒋涛, 叶小娟, 刘春生. 新型二维拉胀材料SiGeS的理论预测及其光电性质.  , 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [8] 黄新玉, 韩旭, 陈辉, 武旭, 刘立巍, 季威, 王业亮, 黄元. 二维材料解理技术新进展及展望.  , 2022, 71(10): 108201. doi: 10.7498/aps.71.20220030
    [9] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展.  , 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [10] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控.  , 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [11] 何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国. 基于二维材料的自旋-轨道矩研究进展.  , 2021, 70(12): 127501. doi: 10.7498/aps.70.20210004
    [12] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应.  , 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [13] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法.  , 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [14] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器.  , 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [15] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强.  , 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [16] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展.  , 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [17] 徐依全, 王聪. 基于二维材料的全光器件.  , 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [18] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展.  , 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [19] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元. 新型机械解理方法在二维材料研究中的应用.  , 2018, 67(21): 218201. doi: 10.7498/aps.67.20181636
    [20] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算.  , 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
计量
  • 文章访问数:  9276
  • PDF下载量:  756
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-29
  • 修回日期:  2016-12-07
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map