搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于广义似然比判决的混沌信号重构方法

任子良 秦勇 黄锦旺 赵智 冯久超

引用本文:
Citation:

基于广义似然比判决的混沌信号重构方法

任子良, 秦勇, 黄锦旺, 赵智, 冯久超

Reconstruction algorithm of chaotic signal based on generalized likelihood ratio threshold-decision

Ren Zi-Liang, Qin Yong, Huang Jin-Wang, Zhao Zhi, Feng Jiu-Chao
PDF
导出引用
  • 由于传感器网络的自身特征和节点的资源受限,使得对观测信号的处理必须考虑量化和能耗等因素,而引入的量化噪声同时增加了系统整体噪声的复杂性.针对传感器网络中整体噪声统计特性难以准确数学建模的特点,提出了一种基于代价参考粒子滤波的混沌信号重构算法.算法采用容积点变换以获得相对准确的更新粒子,并将局部重构信号的代价增量构建为广义似然比函数,用来选择传感器网络中的有效工作节点.仿真结果表明:所提算法可实现混沌信号的有效重构,且在噪声统计特性未知时性能要优于容积卡尔曼粒子滤波算法;算法同时能够通过选择不同的广义似然比阈值,实现网络能耗和重构精度的折中.
    Blind signal reconstruction in sensor arrays is usually a highly nonlinear and non-Gaussian problem, and nonlinear filtering is an effective way to realize state estimation from available observations. Developing the processing problem of blind signal in wireless sensor networks (WSNs) will greatly extend the application scope. Meanwhile, it also meets great challenges such as energy and bandwidth constrained. For solving the constrained problem in WSNs, the observed signals must be quantified before sending to the fusion center, which makes the overall noise unable to be modeled accurately by simple probabilistic model. To study the reconstruction issue of chaotic signal with unknown statistics in WSNs, a reconstructed method of chaotic signal based on a cost reference particle filter (CRPF) is proposed in this paper. The cost recerence cubature particle filter (CRCPF) algorithm adopts cubature-point transformation to enhance the accuracy of prediction particles, and cost-risk functions are defined to complete particle propagation. The effectiveness of proposed CRCPF algorithm is verified in the sensor network with a fusion center. Moreover, a generalized likelihood ratio functionis obtained by the cost increment of local reconstructed signals in the cluster-based sensor network topology model, which is used to reduce the network energy consumption by selecting working nodes. Simulation results show that compared with CPF and CRPF, the proposed algorithm CRCPF attains good performance in a WSN with unknown noise statistics. Meanwhile, the CRCPF algorithm realizes the compromise between energy consumption and reconstruction accuracy simultaneously, which indicates that the proposed CRCPF algorithm has the potential to extend other application scope.
      通信作者: 冯久超, fengjc@scut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:60872123);国家自然科学基金委员会广东省自然科学基金联合基金(批准号:U0835001)和广东省高校科技创新计划基金(2013KJCX0178)资助的课题.
      Corresponding author: Feng Jiu-Chao, fengjc@scut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.60872123),the Joint Fund of the National Natural Science Foundation and the Natural Science Foundation of Guangdong Province,China (Grant No.U0835001),and the Guangdong Higher School Scientific Innovation Project,China (Grant No.2013KJCX0178).
    [1]

    Rawat P, Singh K D, Chaouchi H, Bonnin J M 2014 J. Supercomput. 68 1

    [2]

    Qi H, Wang F B, Deng H 2013 Acta Phys. Sin. 62 270 (in Chinese)[祁浩, 王福豹, 邓宏2013 62 270]

    [3]

    Sun B, Ahmed F, Sun F, Qian Q, Xiao Y 2016 Int. J. Sensor Networks 20 26

    [4]

    Galka A, Wong K K F, Stephani U, Ozaki T 2013 Int. J. Bifurcat. Chaos 23 1350165

    [5]

    Hao X C, Liu W J, Xin M J, Yao N, Ru X Y 2015 Acta Phys. Sin. 64 080101 (in Chinese)[郝晓辰, 刘伟静, 辛敏洁, 姚宁, 汝小月 2015 64 080101]

    [6]

    Chen H B, Tse C K, Feng J C 2008 IEEE Trans. Circ. Syst. Ⅱ:Express Briefs 55 947

    [7]

    Wang S Y, Feng J C 2008 J. Electron. Inform. Technol. 30 89 (in Chinese)[王世元, 冯久超 2008电子与信息学报 30 89]

    [8]

    Hu Z H, Feng J C 2010 J. Southwest Univ. (Natural Science Edition) 32 146 (in Chinese)[胡志辉, 冯久超 2010 西南大学学报(自然科学版) 32 146]

    [9]

    Wang S Y, Feng J C 2012 Acta Phys. Sin. 61 170508 (in Chinese)[王世元, 冯久超 2012 61 170508]

    [10]

    Naqvi S M, Yu M, Chambers J A 2010 IEEE J. Select. Topics in Signal Process. 4 895

    [11]

    Chen H B, Feng J C 2010 J. Southwest Univ. (Natural Science Edition) 32 124 (in Chinese)[陈宏滨, 冯久超 2010 西南大学学报(自然科学版) 32 124]

    [12]

    Huang J W, Feng J C 2014 Chin. Phys. B 23 070504

    [13]

    Chen H B, Tse C K, Feng J C 2009 IEEE Trans. Parall. Distrib. Syst. 20 886

    [14]

    Míguez J, Bugallo M F, Djurić P M 2004 EURASIP J. Adv. Signal Process. 2004 2278

    [15]

    Míguez J 2007 Signal Process. 87 3155

    [16]

    Míguez J 2007 Digit. Signal Process. 17 787

    [17]

    Lu J, Shui P L, Su H T 2014 IET Signal Process. 8 85

    [18]

    Hu Z T, Pan Q, Yang F, Cheng Y M 2009 Systems Engineer. Electron. 31 3022 (in Chinese)[胡振涛, 潘泉, 杨峰, 程咏梅 2009 系统工程与电子技术 31 3022]

    [19]

    Shui P L, Shi S N, Lu J, Jiang X W 2016 Digit. Signal Process. 48 104

    [20]

    Lu J, Su H T, Shui P L, Zhou Z G 2013 J. Xi'an Jiaotong Univ. 47 93 (in Chinese)[卢锦, 苏洪涛, 水鹏朗, 周忠根 2013西安交通大学学报 47 93]

    [21]

    Arasaratnam I, Haykin S 2009 IEEE Trans. Autom. Control 54 1254

    [22]

    Heinzelman W B, Chandrakasan A P, Balakrishnan H 2002 IEEE Trans. Wireless Commun. 1 660

  • [1]

    Rawat P, Singh K D, Chaouchi H, Bonnin J M 2014 J. Supercomput. 68 1

    [2]

    Qi H, Wang F B, Deng H 2013 Acta Phys. Sin. 62 270 (in Chinese)[祁浩, 王福豹, 邓宏2013 62 270]

    [3]

    Sun B, Ahmed F, Sun F, Qian Q, Xiao Y 2016 Int. J. Sensor Networks 20 26

    [4]

    Galka A, Wong K K F, Stephani U, Ozaki T 2013 Int. J. Bifurcat. Chaos 23 1350165

    [5]

    Hao X C, Liu W J, Xin M J, Yao N, Ru X Y 2015 Acta Phys. Sin. 64 080101 (in Chinese)[郝晓辰, 刘伟静, 辛敏洁, 姚宁, 汝小月 2015 64 080101]

    [6]

    Chen H B, Tse C K, Feng J C 2008 IEEE Trans. Circ. Syst. Ⅱ:Express Briefs 55 947

    [7]

    Wang S Y, Feng J C 2008 J. Electron. Inform. Technol. 30 89 (in Chinese)[王世元, 冯久超 2008电子与信息学报 30 89]

    [8]

    Hu Z H, Feng J C 2010 J. Southwest Univ. (Natural Science Edition) 32 146 (in Chinese)[胡志辉, 冯久超 2010 西南大学学报(自然科学版) 32 146]

    [9]

    Wang S Y, Feng J C 2012 Acta Phys. Sin. 61 170508 (in Chinese)[王世元, 冯久超 2012 61 170508]

    [10]

    Naqvi S M, Yu M, Chambers J A 2010 IEEE J. Select. Topics in Signal Process. 4 895

    [11]

    Chen H B, Feng J C 2010 J. Southwest Univ. (Natural Science Edition) 32 124 (in Chinese)[陈宏滨, 冯久超 2010 西南大学学报(自然科学版) 32 124]

    [12]

    Huang J W, Feng J C 2014 Chin. Phys. B 23 070504

    [13]

    Chen H B, Tse C K, Feng J C 2009 IEEE Trans. Parall. Distrib. Syst. 20 886

    [14]

    Míguez J, Bugallo M F, Djurić P M 2004 EURASIP J. Adv. Signal Process. 2004 2278

    [15]

    Míguez J 2007 Signal Process. 87 3155

    [16]

    Míguez J 2007 Digit. Signal Process. 17 787

    [17]

    Lu J, Shui P L, Su H T 2014 IET Signal Process. 8 85

    [18]

    Hu Z T, Pan Q, Yang F, Cheng Y M 2009 Systems Engineer. Electron. 31 3022 (in Chinese)[胡振涛, 潘泉, 杨峰, 程咏梅 2009 系统工程与电子技术 31 3022]

    [19]

    Shui P L, Shi S N, Lu J, Jiang X W 2016 Digit. Signal Process. 48 104

    [20]

    Lu J, Su H T, Shui P L, Zhou Z G 2013 J. Xi'an Jiaotong Univ. 47 93 (in Chinese)[卢锦, 苏洪涛, 水鹏朗, 周忠根 2013西安交通大学学报 47 93]

    [21]

    Arasaratnam I, Haykin S 2009 IEEE Trans. Autom. Control 54 1254

    [22]

    Heinzelman W B, Chandrakasan A P, Balakrishnan H 2002 IEEE Trans. Wireless Commun. 1 660

  • [1] 孔德智, 孙超, 李明杨, 卓颉, 刘雄厚. 深海波导中基于采样简正波模态降维处理的广义似然比检测.  , 2019, 68(17): 174301. doi: 10.7498/aps.68.20190700
    [2] 郭力仁, 胡以华, 王云鹏, 徐世龙. 基于最大似然的单通道交叠激光微多普勒信号参数分离估计.  , 2018, 67(11): 114202. doi: 10.7498/aps.67.20172639
    [3] 陈越, 刘雄英, 吴中堂, 范艺, 任子良, 冯久超. 受污染混沌信号的协同滤波降噪.  , 2017, 66(21): 210501. doi: 10.7498/aps.66.210501
    [4] 李广明, 吕善翔. 混沌信号的压缩感知去噪.  , 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [5] 范展, 梁国龙, 付进, 王燕. 基于信号子空间重构的鲁棒子区域Frost波束形成.  , 2015, 64(5): 054303. doi: 10.7498/aps.64.054303
    [6] 孙棣华, 康义容, 李华民. 驾驶员预估效应下车流能耗演化机理研究.  , 2015, 64(15): 154503. doi: 10.7498/aps.64.154503
    [7] 郭静波, 李佳文. 二进制信号的混沌压缩测量与重构.  , 2015, 64(19): 198401. doi: 10.7498/aps.64.198401
    [8] 梁国龙, 陶凯, 王晋晋, 范展. 声矢量阵宽带目标波束域变换广义似然比检测算法.  , 2015, 64(9): 094303. doi: 10.7498/aps.64.094303
    [9] 刘洲洲, 王福豹. 一种能耗均衡的无线传感器网络加权无标度拓扑研究.  , 2014, 63(19): 190504. doi: 10.7498/aps.63.190504
    [10] 黄锦旺, 李广明, 冯久超, 晋建秀. 一种无线传感器网络中的混沌信号重构算法.  , 2014, 63(14): 140502. doi: 10.7498/aps.63.140502
    [11] 梁家源, 滕维中, 薛郁. 宏观交通流模型的能耗研究.  , 2013, 62(2): 024706. doi: 10.7498/aps.62.024706
    [12] 行鸿彦, 程艳燕, 徐伟. 基于广义窗函数和最小二乘支持向量机的混沌背景下微弱信号检测.  , 2012, 61(10): 100506. doi: 10.7498/aps.61.100506
    [13] 朱留华, 郑容森, 田欢欢, 韦艳芳. 自动巡航的混合交通系统的能耗.  , 2011, 60(12): 128901. doi: 10.7498/aps.60.128901
    [14] 张淑清, 贾健, 高敏, 韩叙. 混沌时间序列重构相空间参数选取研究.  , 2010, 59(3): 1576-1582. doi: 10.7498/aps.59.1576
    [15] 王国光, 王丹, 何丽桥. 混沌中信号的投影滤波.  , 2010, 59(5): 3049-3056. doi: 10.7498/aps.59.3049
    [16] 温坚, 田欢欢, 康三军, 薛郁. 混合交通流元胞自动机FI模型的能耗研究.  , 2010, 59(11): 7693-7700. doi: 10.7498/aps.59.7693
    [17] 田欢欢, 薛郁, 康三军, 梁玉娟. 元胞自动机混合交通流模型的能耗研究.  , 2009, 58(7): 4506-4513. doi: 10.7498/aps.58.4506
    [18] 韩 敏, 史志伟, 郭 伟. 储备池状态空间重构与混沌时间序列预测.  , 2007, 56(1): 43-50. doi: 10.7498/aps.56.43
    [19] 游荣义, 陈 忠, 徐慎初, 吴伯僖. 基于小波变换的混沌信号相空间重构研究.  , 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
    [20] 唐 芳, 邱 琦. 混沌系统的辅助参考反馈控制.  , 1999, 48(5): 802-807. doi: 10.7498/aps.48.802
计量
  • 文章访问数:  6210
  • PDF下载量:  283
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-07
  • 修回日期:  2016-11-20
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map