搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期波动性对金融市场稳定性的影响

周若微 李江城 董志伟 李云仙 钱振伟

引用本文:
Citation:

周期波动性对金融市场稳定性的影响

周若微, 李江城, 董志伟, 李云仙, 钱振伟

Influence of periodic volatility on the stability of financial market

Zhou Ruo-Wei, Li Jiang-Cheng, Dong Zhi-Wei, Li Yun-Xian, Qian Zhen-Wei
PDF
导出引用
  • 利用平均逃逸率和逃逸时间分别研究了周期性波动对股票价格稳定性在金融常态和金融危机下的影响.基于Heston模型、引入单稳势函数和周期函数,构建了描述股票价格处于稳定状态和崩盘的逃逸状态的动力学模型.通过数值模拟和实际数据结合,发现:1)利用道琼斯指数成分股的实际金融数据对模型参数进行估计,对模型和实际金融数据的概率密度函数做了比较,发现模型和实际情况较为符合;2)从金融常态到金融危机逃逸率的研究中,发现较强的经济增长率、较小的周期波动强度、较小的长期波动值和较弱的波动的振幅都会增强股票价格处于稳定状态的机率;3)通过研究金融危机周期性波动对价格平均逃逸时间的影响,发现存在一个最佳的周期波动振幅能最大化股票价格稳定性,某个最佳的波动均值回归速度、变弱的周期波动频率、变强的噪声关联强度和增加的经济增长率会进一步加强该最佳周期波动振幅从而进一步促进稳定性.
    Various stochastic volatility models have been designed to model the variance of the asset price. Among these various models, the Heston model, as one-factor stochastic volatility mode, is the most popular and easiest to implement. Unfortunately, recent findings indicate that existing Heston modelis not able to characterize all aspects of asset returns, such as persistence, mean reverting, and clustering. Therefore, a modified Heston model is proposed in this paper. Compared with the original Heston model, the mean-reverting Cox Ingersoll and Ross process is modified to include a cosine term with the intention of capturing the periodicity of volatility. The phenomenon that high-volatile period is interchanged with low-volatile periods can thus be better described by adding such a period term to the volatility process. In addition, the geometric Brownian motion is replaced by a random walk in the presence of a cubic nonlinearity proposed by Bonanno et al. By doing so, a financial market with two different dynamical regimes (normal activity and extreme days) can be modeled. Closed-form solution for the modified Heston model is not derived in this paper. Instead, Monte-Carlo simulation is used to generate the probability density function of log-return which is then compared with the historical probability density function of stock return. Parameters are adjusted and estimated so that the square errors can be minimized. Daily returns of all the component stocks of Dow-Jones industrial index for the period from 3 September 2007 to 31 December 2008 are used to test the proposed model, and the experimental results demonstrate that the proposed model works very well. The mean escape time and mean periodic escape rate of the proposed modified Heston model with periodic stochastic volatility are studied in this paper with two different dynamical regimes like financial markets in normal activity and extreme days. Also the theoretical results of mean escape time and mean periodic escape rate can be calculated by numerical simulation. The experimental results demonstrate that 1) larger value of rate of return, smaller long run average of variance and smaller magnitude of periodic volatility will reduce the mean periodic escape rate, and thus stabilize the market; 2) by analyzing the mean escape time, an optimal value can be identified for the magnitude of periodic volatility which will maximize the mean escape time and again stabilize the market. In addition, an optimal rate of relaxation to long-time variance, smaller frequency of the periodic volatility, larger rate of return, and stronger correlation between noises will furtherreduce the mean escape time and enhance the market stability.
      通信作者: 李江城, lijiangch@163.com
    • 基金项目: 国家杰出青年科学基金(批准号:11225103);国家自然科学基金(批准号:11165016,71263056);第57批中国博士后科学基金项目(批准号:2015M572507)和云南省博士后定向培养项目(批准号:C6153005)资助的课题.
      Corresponding author: Li Jiang-Cheng, lijiangch@163.com
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No.11225103),the National Natural Science Foundation of China (Grant Nos.11165016,71263056),the China Postdoctoral Science Foundation (Grant No.2015M572507),and Postdoctoral Directional Ttraining Project in Yunnan Province,China (Grant No.C6153005).
    [1]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [2]

    Mei D C, Du L C, Wang C J 2009 J. Stat. Phys. 137 625

    [3]

    Du L C, Mei D C 2012 Eur. Phys. J. B 85 1

    [4]

    Jia Y, Zheng X, Hu X, Li J 2001 Phys. Rev. E 63 293

    [5]

    Zhang X Y, Xu W, Zhou B C 2011 Acta Phys. Sin. 60 060514 (in Chinese)[张晓燕, 徐伟, 周丙常 2011 60 060514]

    [6]

    Cao L, Wu D J 2007 Europhys. Lett. 61 593

    [7]

    Shen C S, Zhang J Q, Chen H S 2007 Acta Phys. Sin. 56 6315 (in Chinese)[申传胜, 张季谦, 陈含爽 2007 56 6315]

    [8]

    Spagnolo B, Valenti D, Fiasconaro A 2004 Math. Biosci. Eng. 1 185

    [9]

    Valenti D, Fiasconaro A, Spagnolo B 2004 Physica A 331 477

    [10]

    Bonanno G, Spagnolo B, Valenti D 2008 Int. J. Bifurcat. Chaos 18 2775

    [11]

    Bonanno G, Spagnolo B 2005 Fluct. Noise Lett. 5 325

    [12]

    Jia Z L 2008 Physica A 387 6247

    [13]

    Yoshimoto M, Shirahama H, Kurosawa S 2008 J. Chem. Phys. 129 014508

    [14]

    Zeng C H, Zhang C, Zeng J K, Liu R F, Wang H 2015 J. Stat. Mech. 2015 08027

    [15]

    Krawiecki A, Holyst J A 2003 Physica A 317 597

    [16]

    Babinec P 2002 Chaos 13 1767

    [17]

    Li J C, Mei D C 2013 Phys. Rev. E 88 012811

    [18]

    Bonanno G, Valenti D, Spagnolo B 2007 Phys. Rev. E 75 016106

    [19]

    Bonanno G, Valenti D, Spagnolo B 2006 Eur. Phys. J. B 53 405

    [20]

    Valenti D, Spagnolo B, Bonanno G 2007 Physica A 382 311

    [21]

    Masoliver J, Perell J 2009 Phys. Rev. E 80 016108

    [22]

    Masoliver J, Perell J 2008 Phys. Rev. E 78 056104

    [23]

    Zhou W X 2007 Introduction to Econophysics (Shanghai:Shanghai University of Finance & Economics Press) pp1-14 (in Chinese)[周炜星 2007 金融物理学导论 (上海:上海财经大学出版社) 第1–14 页]

    [24]

    Yalama A, Celik S 2013 Econ. Model. 30 67

    [25]

    Baaquie B E 1997 J. Phys. I 7 1733

    [26]

    Angelovska J 2010 VaR based on SMA, EWMA and GARCH(1, 1) Volatility Models (Germany:VDM Verlag Dr. Müller) pp1-5

    [27]

    Andersen T G, Tim B, Diebold F X, Paul L 2001 Econometrica 71 579

    [28]

    Bouchaud J P, Potters M 2000 Mpra. Paper 285 18

    [29]

    Gencay R, Dacorogna M, Muller U A, Pictet O, Olsen R 2001 An Introduction to High-Frequency Finance (America:Academic Press) pp1-10

    [30]

    Bollerslev T 1986 J. Econom. 31 307

    [31]

    Ding Z, Granger C W J, Engle R F 1993 J. Empir. Financ. 1 83

    [32]

    Bansal R, Kiku D, Shaliastovich I, Yaron A 2014 J. Financ. 69 2471

    [33]

    Jebabli I, Arouri M, Teulon F 2014 Energ. Econ. 45 66

    [34]

    Heston S L 1993 Rev. Financ. Stud. 6 327

    [35]

    Forde M, Jacquier A, Lee R 2012 SIAM J. Financ. Math. 3 690

    [36]

    Drǎgulescu A A, Yakovenko V M 2002 Quant. Financ. 2 443

    [37]

    Poon S H, Granger C W J 2003 J. Econ. Literature 41 478

    [38]

    Fouque J P, Papanicolaou G, Sircar R, Solna K 2004 Financ. Stoch. 8 451

    [39]

    Cox J C, Ingersoll Jr J E, Ross S A 1985 Econometrica 385

    [40]

    Lux T, Marchesi M 2000 IJTAF 03 675

    [41]

    Gopikrishnan P M, Martin Amaral, Nunes L, Stanley H E 1998 Eur. Phys. J. B 3 139

    [42]

    Lillo F, Mantegna R N 2000 Phys. Rev. E 62 6126

  • [1]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [2]

    Mei D C, Du L C, Wang C J 2009 J. Stat. Phys. 137 625

    [3]

    Du L C, Mei D C 2012 Eur. Phys. J. B 85 1

    [4]

    Jia Y, Zheng X, Hu X, Li J 2001 Phys. Rev. E 63 293

    [5]

    Zhang X Y, Xu W, Zhou B C 2011 Acta Phys. Sin. 60 060514 (in Chinese)[张晓燕, 徐伟, 周丙常 2011 60 060514]

    [6]

    Cao L, Wu D J 2007 Europhys. Lett. 61 593

    [7]

    Shen C S, Zhang J Q, Chen H S 2007 Acta Phys. Sin. 56 6315 (in Chinese)[申传胜, 张季谦, 陈含爽 2007 56 6315]

    [8]

    Spagnolo B, Valenti D, Fiasconaro A 2004 Math. Biosci. Eng. 1 185

    [9]

    Valenti D, Fiasconaro A, Spagnolo B 2004 Physica A 331 477

    [10]

    Bonanno G, Spagnolo B, Valenti D 2008 Int. J. Bifurcat. Chaos 18 2775

    [11]

    Bonanno G, Spagnolo B 2005 Fluct. Noise Lett. 5 325

    [12]

    Jia Z L 2008 Physica A 387 6247

    [13]

    Yoshimoto M, Shirahama H, Kurosawa S 2008 J. Chem. Phys. 129 014508

    [14]

    Zeng C H, Zhang C, Zeng J K, Liu R F, Wang H 2015 J. Stat. Mech. 2015 08027

    [15]

    Krawiecki A, Holyst J A 2003 Physica A 317 597

    [16]

    Babinec P 2002 Chaos 13 1767

    [17]

    Li J C, Mei D C 2013 Phys. Rev. E 88 012811

    [18]

    Bonanno G, Valenti D, Spagnolo B 2007 Phys. Rev. E 75 016106

    [19]

    Bonanno G, Valenti D, Spagnolo B 2006 Eur. Phys. J. B 53 405

    [20]

    Valenti D, Spagnolo B, Bonanno G 2007 Physica A 382 311

    [21]

    Masoliver J, Perell J 2009 Phys. Rev. E 80 016108

    [22]

    Masoliver J, Perell J 2008 Phys. Rev. E 78 056104

    [23]

    Zhou W X 2007 Introduction to Econophysics (Shanghai:Shanghai University of Finance & Economics Press) pp1-14 (in Chinese)[周炜星 2007 金融物理学导论 (上海:上海财经大学出版社) 第1–14 页]

    [24]

    Yalama A, Celik S 2013 Econ. Model. 30 67

    [25]

    Baaquie B E 1997 J. Phys. I 7 1733

    [26]

    Angelovska J 2010 VaR based on SMA, EWMA and GARCH(1, 1) Volatility Models (Germany:VDM Verlag Dr. Müller) pp1-5

    [27]

    Andersen T G, Tim B, Diebold F X, Paul L 2001 Econometrica 71 579

    [28]

    Bouchaud J P, Potters M 2000 Mpra. Paper 285 18

    [29]

    Gencay R, Dacorogna M, Muller U A, Pictet O, Olsen R 2001 An Introduction to High-Frequency Finance (America:Academic Press) pp1-10

    [30]

    Bollerslev T 1986 J. Econom. 31 307

    [31]

    Ding Z, Granger C W J, Engle R F 1993 J. Empir. Financ. 1 83

    [32]

    Bansal R, Kiku D, Shaliastovich I, Yaron A 2014 J. Financ. 69 2471

    [33]

    Jebabli I, Arouri M, Teulon F 2014 Energ. Econ. 45 66

    [34]

    Heston S L 1993 Rev. Financ. Stud. 6 327

    [35]

    Forde M, Jacquier A, Lee R 2012 SIAM J. Financ. Math. 3 690

    [36]

    Drǎgulescu A A, Yakovenko V M 2002 Quant. Financ. 2 443

    [37]

    Poon S H, Granger C W J 2003 J. Econ. Literature 41 478

    [38]

    Fouque J P, Papanicolaou G, Sircar R, Solna K 2004 Financ. Stoch. 8 451

    [39]

    Cox J C, Ingersoll Jr J E, Ross S A 1985 Econometrica 385

    [40]

    Lux T, Marchesi M 2000 IJTAF 03 675

    [41]

    Gopikrishnan P M, Martin Amaral, Nunes L, Stanley H E 1998 Eur. Phys. J. B 3 139

    [42]

    Lillo F, Mantegna R N 2000 Phys. Rev. E 62 6126

  • [1] 肖江平, 戴栋, Victor F. Tarasenko, 邵涛. 大气压空气纳秒脉冲板-板放电中逃逸电子产生机理.  , 2023, 72(10): 105201. doi: 10.7498/aps.72.20222409
    [2] 张茂芳, 游慧敏, 尹相国, 张云波. 半开放系统中的粒子逃逸问题.  , 2022, 71(16): 167302. doi: 10.7498/aps.71.20220450
    [3] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习.  , 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [4] 冯玲, 纪婉妮. 随机波动率费曼路径积分股指期权定价.  , 2019, 68(20): 203101. doi: 10.7498/aps.68.20190714
    [5] 张延惠, 沈志朋, 蔡祥吉, 徐秀兰, 高嵩. 二维Hénon-Heiles势及其变形势体系逃逸率与分形维数的研究.  , 2015, 64(23): 230501. doi: 10.7498/aps.64.230501
    [6] 章程, 马浩, 邵涛, 谢庆, 杨文晋, 严萍. 纳秒脉冲气体放电中逃逸电子束流的研究.  , 2014, 63(8): 085208. doi: 10.7498/aps.63.085208
    [7] 冷永刚, 赖志慧. 基于Kramers逃逸速率的Duffing振子广义调参随机共振研究.  , 2014, 63(2): 020502. doi: 10.7498/aps.63.020502
    [8] 黎明, 陈军, 宫箭. InAs/InP柱型量子线中隧穿时间和逃逸问题的研究.  , 2014, 63(23): 237303. doi: 10.7498/aps.63.237303
    [9] 沈志朋, 张延惠, 蔡祥吉, 赵国鹏, 张秋菊. Stadium型介观器件腔中粒子逃逸率的研究.  , 2014, 63(17): 170509. doi: 10.7498/aps.63.170509
    [10] 吴建军, 徐尚义, 孙会君. 混合交通流时间序列的去趋势波动分析.  , 2011, 60(1): 019502. doi: 10.7498/aps.60.019502
    [11] 卢洪伟, 胡立群, 周瑞杰, 许平, 钟国强, 林士耀, 王少锋. HT-7 Tokamak离子回旋波和低杂波等离子体逃逸电子行为研究.  , 2010, 59(10): 7175-7181. doi: 10.7498/aps.59.7175
    [12] 冷永刚. 基于Kramers逃逸速率的调参随机共振机理.  , 2009, 58(8): 5196-5200. doi: 10.7498/aps.58.5196
    [13] 李晓静. 厄尔尼诺大气物理机理的周期解.  , 2008, 57(9): 5366-5368. doi: 10.7498/aps.57.5366
    [14] 赵海军, 杜孟利. 算法对混沌体系逃逸率的影响.  , 2007, 56(7): 3827-3832. doi: 10.7498/aps.56.3827
    [15] 邵 涛, 孙广生, 严 萍, 谷 琛, 张适昌. 纳秒脉冲下高能量快电子逃逸过程的计算.  , 2006, 55(11): 5964-5968. doi: 10.7498/aps.55.5964
    [16] 邓文基. 推广的EZ模型中的普适性行为.  , 2002, 51(6): 1171-1174. doi: 10.7498/aps.51.1171
    [17] 王仁智, 郑永梅, 李书平. 平均键能Em的物理内涵探讨.  , 2001, 50(2): 273-277. doi: 10.7498/aps.50.273
    [18] 周小兵, 赵长林. 电子回旋波使磁镜中捕获电子与逃逸电子相互转化.  , 1993, 42(8): 1257-1265. doi: 10.7498/aps.42.1257
    [19] 夏蒙棼, 周如玲. 逃逸电子不稳定性.  , 1980, 29(6): 788-793. doi: 10.7498/aps.29.788
    [20] 康寿万, 蔡诗东. 磁化等离子体中逃逸电子的临界速度.  , 1980, 29(3): 311-319. doi: 10.7498/aps.29.311
计量
  • 文章访问数:  6630
  • PDF下载量:  434
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-23
  • 修回日期:  2016-11-29
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map