搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

驾驶员预估效应下车流能耗演化机理研究

孙棣华 康义容 李华民

引用本文:
Citation:

驾驶员预估效应下车流能耗演化机理研究

孙棣华, 康义容, 李华民

Analysis of evolution mechanism of traffic energy dissipation by considering driver’s forecast effect

Sun Di-Hua, Kang Yi-Rong, Li Hua-Min
PDF
导出引用
  • 考虑实际交通中驾驶员预估效应对车辆跟驰行为的影响, 提出了一个改进跟驰模型. 采用线性稳定性理论获得了该模型的线性稳定性判据. 运用数值仿真的方法, 系统研究了驾驶员预估效应下车流的整体平均能耗和单车能耗的演化机理. 研究结果表明, 驾驶员预估效应能显著提高车流稳定性, 且随着驾驶员预估时长的增加, 车流的整体平均能量损耗和单车能量损耗将逐渐降低.
    Starting from the full velocity difference model, an extended car-following model is proposed by considering the influence that in real traffic the driver’s forecast has an effect on car-following behavior of traffic flow. The mechanism how the stability and energy dissipation of traffic flow are in fluenced by the driver’s forecast effect is revealed by the application of the proposed new model. The linear stability condition of the new model is derived theoretically through linear stability theory. The phase diagram of linear stability condition is divided into two regions by each stability curve: the stable and unstable regions. And the corresponding stable region will be enlarged with the increase of driver’s forecast time, hence the traffic condition will be improved through considering driver’s forecast effect. By numerical simulation method, the space-time evolution relation between the velocity and headway of vehicles in car-following queue is investigated systematically under the influence of driver’s forecast. In the same time, the evolution mechanisms of the overall average energy dissipation of traffic flow and individual vehicle energy consumption with the addition of small disturbance are discussed explicitly under a periodic condition, and it is discovered that the overall average energy consumption in traffic flow and the energy dissipation of individual vehicle is accompanied by a complex critical phase transition process. Good agreement between the numerical simulation and the theoretical analysis show that by considering of driver’s forecast effect, not only the stability of traffic flow is enhanced obviously, but the energy consumption is reduced remarkably as we expect. Furthermore, it is verified that both the overall average energy consumption of the considered traffic flow and the energy consumption of an individual vehicle are reduced gradually along with the increase of driver’s forecast time. On the other hand, numerical simulation results verify that the shortcoming of negative speed appearing in the full velocity difference model with low reaction coefficient can be effectively avoided by increasing the driver’s forecast time in the improved model, which means that the dynamic characteristics of traffic flow can be described more precisely by the proposed model.
    • 基金项目: 教育部博士点基金项目(批准号: 20120191110047)和中央高校基本科研业务费专项资金(批准号: 106112014CDJZR178801)资助的课题.
    • Funds: Project supported by the Doctoral Program of Higher Education of China (Grant No. 20120191110047), and the Fundamental Research Funds for the Central Universities (Grant No. 106112014CDJZR178801).
    [1]

    Li Z P, Zhang R, Xu S Z, Qian Y Q 2015 Commun. Nonlinear Sci. Numer. Simul. 24 52

    [2]

    Gupta A K, Redhu P 2013 Physica A 392 5622

    [3]

    Lei Y, Zhong K S, Tong L 2014 Phys. Lett. A 378 348

    [4]

    Jin S, Wang D H, Tao P F, Li P F 2010 Physica A 389 4654

    [5]

    Sun D H , Zhang M , Tian C 2014 Mod. Phys. Lett. B 28 1450091

    [6]

    Zhou T, Sun D H, Kang Y R, Li H M, Tian C 2014 Commun. Nonlinear Sci. Numer. Simul. 19 3820

    [7]

    Chowdhury D, Santen L, Schadschneider A 2000 Phy. Rep. 329 199

    [8]

    Helbing D 2001 Rev. Mod. Phys. 73 1067

    [9]

    Lighthill M J, Whitham G B 1955 Proc. Roy. Soc. A 229 317

    [10]

    Richards P I 1956 Oper. Res. 4 42

    [11]

    Payne H J 1971 Simul. Coun. Proc. Ser. Math. Sys. 1 51

    [12]

    Jiang R, Wu Q S, Zhu Z J 2002 Transp. Res. B 36 405

    [13]

    Bando M, Hasebe K, Shibata A, Sugiyama Y 1995 Phys. Rev. E 51 1035

    [14]

    Helbing D, Tilch B 1998 Phys. Rev. E 58 133

    [15]

    Jiang R, Wu Q S, Zhu Z J 2001 Phys. Rev. E 64 017101

    [16]

    Nagel K, Schreckenberg M 1992 J. Phys. I 2 2221

    [17]

    Fukui M, Ishibashi Y 1996 J. Phys. Soc. Jpn. 65 1868

    [18]

    Nakayama A, Sugiyama Y, Hasebe K 2002 Phys. Rev. E 65 016112

    [19]

    Wang T, Gao Z Y, Zhao X M 2006 Acta Phys. Sin. 55 634 (in Chinese) [王涛, 高自友, 赵小梅 2006 55 634]

    [20]

    Shi W, Xue Y 2007 Physica A 381 399

    [21]

    Zhang W, Zhang W, Yang X Q 2008 Physica A 387 4657

    [22]

    Tian H H, Xue Y, Kan S J, Liang Y J 2009 Acta Phys. Sin. 58 4506 (in Chinese) [田欢欢, 薛郁, 康三军, 梁玉娟 2009 58 4506]

    [23]

    Wen J, Tian H H, Kan S J, Xue Y 2010 Acta Phys. Sin. 59 7693 (in Chinese) [温坚, 田欢欢, 康三军, 薛郁 2010 59 7693]

    [24]

    Zhu W X, Zhang C H 2013 Physica A 392 3301

    [25]

    Tang T Q, Huang H J, Shang H Y 2010 Phys. Lett. A 374 1668

    [26]

    Peng G H 2013 Commun. Nonlinear Sci. Numer. Simul. 18 2801.

  • [1]

    Li Z P, Zhang R, Xu S Z, Qian Y Q 2015 Commun. Nonlinear Sci. Numer. Simul. 24 52

    [2]

    Gupta A K, Redhu P 2013 Physica A 392 5622

    [3]

    Lei Y, Zhong K S, Tong L 2014 Phys. Lett. A 378 348

    [4]

    Jin S, Wang D H, Tao P F, Li P F 2010 Physica A 389 4654

    [5]

    Sun D H , Zhang M , Tian C 2014 Mod. Phys. Lett. B 28 1450091

    [6]

    Zhou T, Sun D H, Kang Y R, Li H M, Tian C 2014 Commun. Nonlinear Sci. Numer. Simul. 19 3820

    [7]

    Chowdhury D, Santen L, Schadschneider A 2000 Phy. Rep. 329 199

    [8]

    Helbing D 2001 Rev. Mod. Phys. 73 1067

    [9]

    Lighthill M J, Whitham G B 1955 Proc. Roy. Soc. A 229 317

    [10]

    Richards P I 1956 Oper. Res. 4 42

    [11]

    Payne H J 1971 Simul. Coun. Proc. Ser. Math. Sys. 1 51

    [12]

    Jiang R, Wu Q S, Zhu Z J 2002 Transp. Res. B 36 405

    [13]

    Bando M, Hasebe K, Shibata A, Sugiyama Y 1995 Phys. Rev. E 51 1035

    [14]

    Helbing D, Tilch B 1998 Phys. Rev. E 58 133

    [15]

    Jiang R, Wu Q S, Zhu Z J 2001 Phys. Rev. E 64 017101

    [16]

    Nagel K, Schreckenberg M 1992 J. Phys. I 2 2221

    [17]

    Fukui M, Ishibashi Y 1996 J. Phys. Soc. Jpn. 65 1868

    [18]

    Nakayama A, Sugiyama Y, Hasebe K 2002 Phys. Rev. E 65 016112

    [19]

    Wang T, Gao Z Y, Zhao X M 2006 Acta Phys. Sin. 55 634 (in Chinese) [王涛, 高自友, 赵小梅 2006 55 634]

    [20]

    Shi W, Xue Y 2007 Physica A 381 399

    [21]

    Zhang W, Zhang W, Yang X Q 2008 Physica A 387 4657

    [22]

    Tian H H, Xue Y, Kan S J, Liang Y J 2009 Acta Phys. Sin. 58 4506 (in Chinese) [田欢欢, 薛郁, 康三军, 梁玉娟 2009 58 4506]

    [23]

    Wen J, Tian H H, Kan S J, Xue Y 2010 Acta Phys. Sin. 59 7693 (in Chinese) [温坚, 田欢欢, 康三军, 薛郁 2010 59 7693]

    [24]

    Zhu W X, Zhang C H 2013 Physica A 392 3301

    [25]

    Tang T Q, Huang H J, Shang H Y 2010 Phys. Lett. A 374 1668

    [26]

    Peng G H 2013 Commun. Nonlinear Sci. Numer. Simul. 18 2801.

  • [1] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析.  , 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [2] 王世伟, 朱朋哲, 李瑞. 界面羟基对碳纳米管摩擦行为和能量耗散的影响.  , 2018, 67(7): 076101. doi: 10.7498/aps.67.20180311
    [3] 孔江涛, 黄健, 龚建兴, 李尔玉. 基于复杂网络动力学模型的无向加权网络节点重要性评估.  , 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [4] 华雪东, 王炜, 王昊. 考虑车与车互联通讯技术的交通流跟驰模型.  , 2016, 65(1): 010502. doi: 10.7498/aps.65.010502
    [5] 王日兴, 贺鹏斌, 肖运昌, 李建英. 铁磁/重金属双层薄膜结构中磁性状态的稳定性分析.  , 2015, 64(13): 137201. doi: 10.7498/aps.64.137201
    [6] 朱攀丞, 边庆勇, 李晋斌. 欧拉圆盘不同能量耗散机理之间的关联.  , 2015, 64(17): 174501. doi: 10.7498/aps.64.174501
    [7] 刘中淼, 孙其诚, 宋世雄, 史庆藩. 准静态颗粒流流动规律的热力学分析.  , 2014, 63(3): 034702. doi: 10.7498/aps.63.034702
    [8] 曾友志, 张宁. 最相邻后车综合信息对交通流不稳定性的影响分析.  , 2014, 63(21): 218901. doi: 10.7498/aps.63.218901
    [9] 叶晶晶, 李克平, 金新民. 基于跟驰模型列车运行优化控制模拟研究.  , 2014, 63(7): 070202. doi: 10.7498/aps.63.070202
    [10] 曾友志, 张宁, 刘利娟. 考虑司机扰动风险偏好异质的跟驰模型.  , 2014, 63(6): 068901. doi: 10.7498/aps.63.068901
    [11] 葛红霞, 崔煜, 程荣军. 考虑前后车效应的反馈控制跟驰模型.  , 2014, 63(11): 110504. doi: 10.7498/aps.63.110504
    [12] 彭政, 蒋亦民, 刘锐, 厚美瑛. 垂直振动激发下颗粒物质的能量耗散.  , 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [13] 梁家源, 滕维中, 薛郁. 宏观交通流模型的能耗研究.  , 2013, 62(2): 024706. doi: 10.7498/aps.62.024706
    [14] 袁娜, 化存才. 多前车速度差的车辆跟驰模型的稳定性与孤波.  , 2012, 61(16): 160509. doi: 10.7498/aps.61.160509
    [15] 张立东, 贾磊, 朱文兴. 弯道交通流跟驰建模与稳定性分析.  , 2012, 61(7): 074501. doi: 10.7498/aps.61.074501
    [16] 魏高峰, 李开泰, 冯 伟, 高洪芬. 非协调数值流形方法的稳定性和收敛性分析.  , 2008, 57(2): 639-647. doi: 10.7498/aps.57.639
    [17] 陈 漩, 高自友, 赵小梅, 贾 斌. 反馈控制双车道跟驰模型研究.  , 2007, 56(4): 2024-2029. doi: 10.7498/aps.56.2024
    [18] 王 涛, 高自友, 赵小梅. 多速度差模型及稳定性分析.  , 2006, 55(2): 634-640. doi: 10.7498/aps.55.634
    [19] 袁常青, 赵同军, 王永宏, 展 永. 有限体系能量耗散运动的功率谱分析.  , 2005, 54(12): 5602-5608. doi: 10.7498/aps.54.5602
    [20] 薛 郁. 随机计及相对速度的交通流跟驰模型.  , 2003, 52(11): 2750-2756. doi: 10.7498/aps.52.2750
计量
  • 文章访问数:  5588
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-22
  • 修回日期:  2015-03-04
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map