-
凝聚相条件下,受分子间相互作用的影响,分子的解离机理通常不同于孤立分子.如何在凝聚相材料中有效地监测分子反应的进程和产物是目前急需解决的一个技术难题.本文介绍了飞秒瞬态光栅光谱技术在凝聚相材料解离动力学研究中的应用.作为相干光谱技术的一种,瞬态光栅光谱的信号强度高、无背底,因此能够有效地鉴别体系中的微量反应产物.通过对碘甲烷、硝基甲烷等模型体系的研究,验证了瞬态光栅技术不仅能够在时域上给出电子态的弛豫信息,还能够在光谱上同时监测反应物和产物以及分子或基团的振动.凝聚相条件下的解离动力学研究对于了解生化、爆炸等反应的机理有非常重要的意义,因此飞秒瞬态光栅技术在这方面具有广阔的应用空间.此外,作为一种非接触的诊断技术,瞬态光栅很容易和高温、高压等条件结合,因此瞬态光栅技术在研究材料的相变动力学、高压合成等方面也具有潜在的应用价值.In condensed phase, the dissociation mechanism of molecule is different from that of isolated molecule due to the effect of interaction between molecules. How to effectively trace the reaction process and products in condensed phase is a technical problem which needs to be solved urgently. In this paper, femtosecond transient grating spectroscopy is used to investigate dissociation dynamics in condensed phase. Transient grating spectroscopy, as a coherent spectral technique, has some advantages such as high signal-noise ratio and free background, thus it can identify trace numbers of reaction products in dissociation. The investigation about model molecules such as iodomethane and nitromethane demonstrates that the transient grating technique can observe relaxation in electronic excited state and also has ability to track reactants, products, and vibration of molecule or perssad. The dissociation dynamics in condensed phase material is significant for understanding the reaction mechanism in the fields of biochemistry and detonation. Thus the femtosecond transient grating has a wide application prospect in these fields. In addition, the transient grating technique, as a non-contact diagnostic approach, can be easily adapted to high temperature and high pressure conditions, etc. Thus, the transient grating technique also has a potential value in the fields of phase transform dynamics and high pressure synthesis, etc.
[1] Dantus M, Rosker M J, Zewail A H 1987 J. Chem. Phys. 87 2395
[2] Zewail A H 1980 Phys. Today 11 27
[3] Materny A, Chen T, Schmitt M, Siebert T, Vierheilig A, Engel V, Kiefer W 2000 Appl. Phys. B 71 299
[4] Torralva B R, Allen R E 2002 J. Mod. Opt. 49 593
[5] Gruebele M, Wolynes P G 2004 Acc. Chem. Res. 37 261
[6] Xu S C, Lin M C 2005 J. Phys. Chem. B 109 8367
[7] Hause M L, Herath N, Zhu R S, Lin M C, Suits A G 2011 Nat. Chem. 3 932
[8] Schweihgofer F, Dworak L, Braun M, Zastrow M, Wahl J, Burghardt I, Braun K R, Wachtveitl J 2015 Sci. Rep. 5 9368
[9] Elles C G, Grim F F 2006 Annu. Rev. Phys. Chem. 57 273
[10] Crim F F 2011 Nat. Chem. 3 344
[11] Greaves S J, Rose R A, Oliver T A A, Glowacki D R, Ashfold M N R, Harvey J N, Clark I P, Greetham G M, Parker A W, Towrie M, Orr-Eving A J 2011 Science 331 1423
[12] Jiang L L, Liu W L, Song Y F, He X, Wang Y, Wang C, Wu H L, Yang F, Yang Y Q 2014 Chem. Phys. 429 12
[13] Wang Y, Song Y F, Liu W L, Liu Y Q, Duo L P, Jiang L L, Yang Y Q 2015 Chem. Phys. Lett. 633 126
[14] Wang Y, Liu W L, Song Y F, Liu Y Q, Duo L P, Jiang L L, Yu G Y, Yang Y Q 2015 J. Chem. Phys. 143 051101
[15] Wu H L, Song Y F, Yu G Y, Wang Y, Wang C, Yang Y Q 2016 Chem. Phys. Lett. 652 152
[16] Zeng Y Y, Song Y F, Yu G Y, Zheng X X, Guo W C, Zhao J, Yang Y Q 2016 J. Mol. Struct. 1119 240
[17] Guo Y Q, Bhattacharya A, Bernstein E R 2009 J. Phys. Chem. A 113 85
[18] Lin M F, Lee Y T, Ni C K, Xu S C, Lin M C 2007 J. Chem. Phys. 126 064310
[19] Robel I, Subramanian V, Kuno M, Kamat P V 2006 J. Am. Chem. Soc. 128 2385
[20] McCamant D W, Kukura P, Yoon S, Mathies R A 2004 Rev. Sci. Instrum. 75 4971
-
[1] Dantus M, Rosker M J, Zewail A H 1987 J. Chem. Phys. 87 2395
[2] Zewail A H 1980 Phys. Today 11 27
[3] Materny A, Chen T, Schmitt M, Siebert T, Vierheilig A, Engel V, Kiefer W 2000 Appl. Phys. B 71 299
[4] Torralva B R, Allen R E 2002 J. Mod. Opt. 49 593
[5] Gruebele M, Wolynes P G 2004 Acc. Chem. Res. 37 261
[6] Xu S C, Lin M C 2005 J. Phys. Chem. B 109 8367
[7] Hause M L, Herath N, Zhu R S, Lin M C, Suits A G 2011 Nat. Chem. 3 932
[8] Schweihgofer F, Dworak L, Braun M, Zastrow M, Wahl J, Burghardt I, Braun K R, Wachtveitl J 2015 Sci. Rep. 5 9368
[9] Elles C G, Grim F F 2006 Annu. Rev. Phys. Chem. 57 273
[10] Crim F F 2011 Nat. Chem. 3 344
[11] Greaves S J, Rose R A, Oliver T A A, Glowacki D R, Ashfold M N R, Harvey J N, Clark I P, Greetham G M, Parker A W, Towrie M, Orr-Eving A J 2011 Science 331 1423
[12] Jiang L L, Liu W L, Song Y F, He X, Wang Y, Wang C, Wu H L, Yang F, Yang Y Q 2014 Chem. Phys. 429 12
[13] Wang Y, Song Y F, Liu W L, Liu Y Q, Duo L P, Jiang L L, Yang Y Q 2015 Chem. Phys. Lett. 633 126
[14] Wang Y, Liu W L, Song Y F, Liu Y Q, Duo L P, Jiang L L, Yu G Y, Yang Y Q 2015 J. Chem. Phys. 143 051101
[15] Wu H L, Song Y F, Yu G Y, Wang Y, Wang C, Yang Y Q 2016 Chem. Phys. Lett. 652 152
[16] Zeng Y Y, Song Y F, Yu G Y, Zheng X X, Guo W C, Zhao J, Yang Y Q 2016 J. Mol. Struct. 1119 240
[17] Guo Y Q, Bhattacharya A, Bernstein E R 2009 J. Phys. Chem. A 113 85
[18] Lin M F, Lee Y T, Ni C K, Xu S C, Lin M C 2007 J. Chem. Phys. 126 064310
[19] Robel I, Subramanian V, Kuno M, Kamat P V 2006 J. Am. Chem. Soc. 128 2385
[20] McCamant D W, Kukura P, Yoon S, Mathies R A 2004 Rev. Sci. Instrum. 75 4971
计量
- 文章访问数: 6773
- PDF下载量: 400
- 被引次数: 0