-
为了有效抵御窃听者对本振光的攻击,提高连续变量量子密钥分发(continuous-variable quantum key distribution,CVQKD)系统的安全性,提出了一种基于散粒噪声方差实时监测的CVQKD系统.该系统采用散粒噪声方差标定技术,在原有的CVQKD系统中加入散粒噪声方差实时监测模块,通过本振光强和散粒噪声方差的线性关系评估出实时的散粒噪声方差,再计算系统准确实时的密钥率来判断当前系统是否处于安全状态.实验上也表明了该系统能够有效抵御Eve对本振光的攻击,提高CVQKD系统的安全性.
-
关键词:
- 连续变量量子密钥分发系统 /
- 散粒噪声方差标度技术 /
- 本振光 /
- 实时散粒噪声方差
In the safety assessment of the actual CVQKD (continuous-variable quantum key distribution) system,the preparation measurement model is generally equivalent to the entanglement-based model,whose major drawback is that the shot noise variance is treated as a constant.As the attacks on the LO (local oscillator) from the Eve,the shot noise variance will change with LO.And in the process of safety analysis based on the shot noise variance calibration technology,there are loopholes in which the shot noise variance for calculating secret key rate is obtained by the linear relationship between the shot noise variance and the LO before distributing the quantum key.However,the shot noise variance is not accurate nor real-time.In the security analysis of system,all the noise parameters of the system are normalized to the shot noise variance.The Eve can reduce the shot noise variance by controlling the strength of LO,thus actual excess noise of system will increase.But legal communicating parties are still normalized based on previous larger shot noise variance,so that the excess noise of system is substantially underestimated.As a consequence,the Eve can obtain secret key information without attracting the attention of legal communicating parties by adopting some attacks, such as intercept-resend attack.Thus it is an essential factor for ensuring the system security to evaluate real-time shot noise variance accurately.In order to effectively resist the above mentioned attacks on the LO from the Eve,a scheme of CVQKD system based on real-time shot noise variance monitoring is presented to improve the security of CVQKD system.The shot noise variance calibration technology is adopted in this system.By adding the real-time shot noise variance monitoring modules to the primary CVQKD system,the real-time shot noise variance is assessed by the linear relationship between the shot noise variance and the LO.In the hardware system,independent clocks are adopted. Sampling in peak algorithm is applied to software system,and this effectively solves the problem that CVQKD system with LO clock source is at risk of shot noise variance calibration attack.The scheme prevents the hazards that the Eve changes previously calibrated linear relationship by regulating the pulse delay of the LO,and thus judges whether the system is safe through calculating the accurate and real-time secret key rate.The system can analyze the real-time security of quantum key distribution and display safety status of system.The experimental results show that this system can defend effectively the LO attacks from the Eve and improve the security performance of the CVQKD system.-
Keywords:
- continuous-variable quantum key distribution /
- shot noise variance calibration technology /
- local oscillator /
- real-time shot noise variance
[1] Zeng G H 2006 Quantum Cryptography (Beijing:Science Press) pp128-132(in Chinese)[曾贵华2006量子密码学(北京:科学出版社)第128–132页]
[2] Scarani V, Bechmann P H, Cerf N J, Dusek M, Ltkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301
[3] Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902
[4] Zeng G H 2010 Quantum Private Communication (Berlin:Springer-Verlag) pp289-297
[5] Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C, Lam P K 2004 Phys. Rev. Lett. 93 170504
[6] Lance A M, Symul T, Sharma V, Weedbrook C, Ralph T C, Lam P K 2005 Phys. Rev. Lett. 95 180503
[7] Shen Y, Zou H, Tian L, Chen P, Yuan J 2010 Phys. Rev. A 82 022317
[8] Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504
[9] Shen Y, Zou H X 2010 Acta Phys. Sin. 59 1473 (in Chinese)[沈咏, 邹宏新2010 59 1473]
[10] Leverrier A, Grangier P 2011 Phys. Rev. A 83 042312
[11] Lodewyck J, Debuisschert T, Tualle B R, Grangier P 2005 Phys. Rev. A 72 050303
[12] Lodewyck J, Bloch M, García P R, Fossier S, Karpov E, Diamanti E, Grangier P 2007 Phys. Rev. A 76 042305
[13] Fossier S, Diamanti E, Debuisschert T, Tualle B R, Grangier P 2009 J. Phys. B 42 114014
[14] Xu Y W, Zeng L B, Shao F W, Yong M L, Kun C P 2013 Chin. Phys. Lett. 30 010305
[15] Leverrier A, Alléaume R, Boutros J, Zémor G, Grangier P 2008 Phys. Rev. A 77 042325
[16] Jouguet P, Kunz J S, Leverrier A 2011 Phys. Rev. A 84 062317
[17] Jouguet P, Kunz J S, Leverrier A, Grangier P, Diamanti E 2013 Nature Photon. 7 378
[18] Huang D, Huang P, Lin D, Zeng G 2016 Sci. Rep. 6 19201
[19] Jouguet P, Kunz J S, Diamanti E 2013 Phys. Rev. A 87 062313
[20] Grosshans F, van Assche G, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature 421 238
[21] Navascués M, Grosshans F, Acin A 2006 Phys. Rev. Lett. 97 190502
[22] Garcia P R, Cerf N J 2006 Phys. Rev. Lett. 97 190503
[23] Grosshans F, Cerf N J 2004 Phys. Rev. Lett. 92 047905
[24] Holevo A S 1998 IEEE Trans. Inf. Theory 44 269
-
[1] Zeng G H 2006 Quantum Cryptography (Beijing:Science Press) pp128-132(in Chinese)[曾贵华2006量子密码学(北京:科学出版社)第128–132页]
[2] Scarani V, Bechmann P H, Cerf N J, Dusek M, Ltkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301
[3] Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902
[4] Zeng G H 2010 Quantum Private Communication (Berlin:Springer-Verlag) pp289-297
[5] Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C, Lam P K 2004 Phys. Rev. Lett. 93 170504
[6] Lance A M, Symul T, Sharma V, Weedbrook C, Ralph T C, Lam P K 2005 Phys. Rev. Lett. 95 180503
[7] Shen Y, Zou H, Tian L, Chen P, Yuan J 2010 Phys. Rev. A 82 022317
[8] Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504
[9] Shen Y, Zou H X 2010 Acta Phys. Sin. 59 1473 (in Chinese)[沈咏, 邹宏新2010 59 1473]
[10] Leverrier A, Grangier P 2011 Phys. Rev. A 83 042312
[11] Lodewyck J, Debuisschert T, Tualle B R, Grangier P 2005 Phys. Rev. A 72 050303
[12] Lodewyck J, Bloch M, García P R, Fossier S, Karpov E, Diamanti E, Grangier P 2007 Phys. Rev. A 76 042305
[13] Fossier S, Diamanti E, Debuisschert T, Tualle B R, Grangier P 2009 J. Phys. B 42 114014
[14] Xu Y W, Zeng L B, Shao F W, Yong M L, Kun C P 2013 Chin. Phys. Lett. 30 010305
[15] Leverrier A, Alléaume R, Boutros J, Zémor G, Grangier P 2008 Phys. Rev. A 77 042325
[16] Jouguet P, Kunz J S, Leverrier A 2011 Phys. Rev. A 84 062317
[17] Jouguet P, Kunz J S, Leverrier A, Grangier P, Diamanti E 2013 Nature Photon. 7 378
[18] Huang D, Huang P, Lin D, Zeng G 2016 Sci. Rep. 6 19201
[19] Jouguet P, Kunz J S, Diamanti E 2013 Phys. Rev. A 87 062313
[20] Grosshans F, van Assche G, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature 421 238
[21] Navascués M, Grosshans F, Acin A 2006 Phys. Rev. Lett. 97 190502
[22] Garcia P R, Cerf N J 2006 Phys. Rev. Lett. 97 190503
[23] Grosshans F, Cerf N J 2004 Phys. Rev. Lett. 92 047905
[24] Holevo A S 1998 IEEE Trans. Inf. Theory 44 269
计量
- 文章访问数: 6204
- PDF下载量: 243
- 被引次数: 0