搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相位梯度界面对光传播规律的影响

肖啸 谢世伟 张志友 杜惊雷

引用本文:
Citation:

相位梯度界面对光传播规律的影响

肖啸, 谢世伟, 张志友, 杜惊雷

Influence of gradient phased interfaces on the laws of light propagation

Xiao Xiao, Xie Shi-Wei, Zhang Zhi-You, Du Jing-Lei
PDF
导出引用
  • 在两种介质分界面上引入相位梯度形成相位梯度界面,这将使该界面的出射光和入射光之间产生相移.因此,与普通分界面不同,该界面对光的传播行为有着重大影响.为深入认识梯度相位界面的光学特性,本文研究了光在该类界面上的一般性传播规律.从费马原理出发,采用稳态相位法推导了基于相位梯度界面条件下的二维和三维广义反射和折射定律,该定律表明分界面也会成为影响光传播行为的重要因素,可以作为新的波前调制工具.利用广义反射和折射定律讨论了相位梯度对光传播行为的影响规律,得出了二维和三维情形下的临界条件(全反射和全透射条件),阐明了反射角不等于入射角、异常反射和折射、非平面反射和折射等一些新颖光学现象出现的原因;提出了以相位梯度界面为光学变换核心单元,依据广义反射和折射定律进行光学设计的思路,并以平面透镜和平面轴锥镜为例进行了详细说明与实验验证,实验结果和理论值符合较好,可为拓展广义定律在平面光学设计、自由曲面光学设计以及复杂光束控制中的应用提供参考.
    The gradient phased interface is characterized by a non-zero phase variation along the interface between two optical media,which could generate a phase shit between the emitted and incident light beams.Unlike common ones,gradient phased interfaces have a great influence on the laws of light propagation,including light reflection and refraction,and some novel phenomena are observed.For a comprehensive understanding the optical characteristics of those gradient surfaces,the universal laws of light propagation at gradient phased interfaces are derived and discussed in detail in this paper.According to Fermat's principle,we use the stationary phase method to successively acquire the two-dimensional (2D) and three-dimensional (3D) generalized laws of reflection and refraction.In the 2D generalized laws,the interfacial phase gradient lies in the plane of incidence,which is coplanar with the incident,refracted and reflected light beams. But in the 3D case,the phase gradient does not lie in the plane of incidence,and the non-planar reflection and refraction phenomena are observed.These generalized reflection and refraction laws indicate that the interface between two media could be an important factor when light traverses it,and gradient phased interfaces provide new degrees of freedom for manipulating the wavefront of light beams.Based on the generalized reflection and refraction laws,we analyze the influence of phase gradient on light propagation,then obtain critical angles of incidence for reflection and refraction (i.e.the critical angles for total internal reflection and total transmission) in 2D and 3D cases,and explain the reasons for some novel phenomena,such as reflection angle unequal to incidence angle,anomalous reflection and refraction, out-of-plane reflection and refraction,etc.These analysis results show that generalized laws of reflection and refraction have important value in optical design.In addition,we propose an optical design idea based on generalized laws of reflection and refraction,in which gradient phased interfaces are used as core components of optical elements to perform optical transform.And then a flat lens and flat axicon are taken for example to illustrate this idea,the design process of the two flat optical elements are shown in detail.Moreover,we experimentally simulate the gradient surfaces of the two elements by spatial light modulator,and experimental results agree well with theoretical values.It proves that this design idea is practicable.Our research is useful to understand comprehensively the generalized reflection and refraction laws,and extend the applications of generalized laws to flat optics,freeform optics and the accurate control of complex wavefront.
      通信作者: 杜惊雷, dujl@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11305111,61307039)、四川省自然科学基金(批准号:15ZA0280)和乐山市科技研究基金(批准号:15GZD108,Z1320)资助的课题.
      Corresponding author: Du Jing-Lei, dujl@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305111, 61307039), the Natural Science Foundation of Sichuan Province, China (Grant No. 15ZA0280), and the Science-Technology Foundation of Leshan City, China (Grant Nos. 15GZD108, Z1320).
    [1]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Kats M A, Genevet P, Aoust G, Yu N F, Blanchard R, Aieta F, Gaburro Z, Capasso F 2012 PNAS 109 12364

    [3]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427

    [4]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 NanoLett. 12 1702

    [5]

    Yu N, Genevet P, Aieta F, Kats M A, Blanchard R, Aoust G, Tetienne J P, Gaburro Z, Capasso F 2013 IEEE J. Sel. Top. Quantum. Electron. 19 4700423

    [6]

    SunY Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese)[孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾2013 62 104201]

    [7]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese)[李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学2014 63 084103]

    [8]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 094101 (in Chinese)[李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学2015 64 094101]

    [9]

    Zheng G, Mhlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308

    [10]

    Pfeiffer C, Emani N K, Shaltout A M, Boltasseva A, Shalaev V M, Grbic A 2014 Nano Lett. 14 2491

    [11]

    Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photonics Rev. 9 195

    [12]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photonics 8 889

    [13]

    Yulevich I, Maguid E, Shitrit N, Veksler D, Kleiner V, Hasman E 2015 Phys. Rev. Lett. 115 205501

    [14]

    Yu N, Capasso F 2015 J. Lightwave Technol. 33 2344

    [15]

    Ho J S, Qiu B, Tanabe Yu, Yeh A J, Fan S, Poon A S 2015 Phys. Rev. B 91 125145

    [16]

    Genevet P, Yu N, Aieta F, Lin J, Kats M A, Blanchard R, Scully M O, Gaburro Z, Capasso F 2012 Appl. Phys. Lett. 100 013101

    [17]

    Estakhri N M, Argyropoulos C, Alù A 2015 Phil. Trans. R. Soc. A 373 20140351

    [18]

    Wang D, Gu Y, Gong Y, Qiu C W, Hong M 2015 Opt. Express 23 11114

    [19]

    Zhao Z, Pu M, Gao H, Jin J, Li X, Ma X, Wang Y, Gao P, Luo X 2015 Sci. Rep. 5 15781

    [20]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426

    [21]

    Kildishev A, Boltasseva A, Shalaev V 2013 Science 339 1232009

  • [1]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Kats M A, Genevet P, Aoust G, Yu N F, Blanchard R, Aieta F, Gaburro Z, Capasso F 2012 PNAS 109 12364

    [3]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427

    [4]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 NanoLett. 12 1702

    [5]

    Yu N, Genevet P, Aieta F, Kats M A, Blanchard R, Aoust G, Tetienne J P, Gaburro Z, Capasso F 2013 IEEE J. Sel. Top. Quantum. Electron. 19 4700423

    [6]

    SunY Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese)[孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾2013 62 104201]

    [7]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese)[李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学2014 63 084103]

    [8]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 094101 (in Chinese)[李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学2015 64 094101]

    [9]

    Zheng G, Mhlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308

    [10]

    Pfeiffer C, Emani N K, Shaltout A M, Boltasseva A, Shalaev V M, Grbic A 2014 Nano Lett. 14 2491

    [11]

    Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photonics Rev. 9 195

    [12]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photonics 8 889

    [13]

    Yulevich I, Maguid E, Shitrit N, Veksler D, Kleiner V, Hasman E 2015 Phys. Rev. Lett. 115 205501

    [14]

    Yu N, Capasso F 2015 J. Lightwave Technol. 33 2344

    [15]

    Ho J S, Qiu B, Tanabe Yu, Yeh A J, Fan S, Poon A S 2015 Phys. Rev. B 91 125145

    [16]

    Genevet P, Yu N, Aieta F, Lin J, Kats M A, Blanchard R, Scully M O, Gaburro Z, Capasso F 2012 Appl. Phys. Lett. 100 013101

    [17]

    Estakhri N M, Argyropoulos C, Alù A 2015 Phil. Trans. R. Soc. A 373 20140351

    [18]

    Wang D, Gu Y, Gong Y, Qiu C W, Hong M 2015 Opt. Express 23 11114

    [19]

    Zhao Z, Pu M, Gao H, Jin J, Li X, Ma X, Wang Y, Gao P, Luo X 2015 Sci. Rep. 5 15781

    [20]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426

    [21]

    Kildishev A, Boltasseva A, Shalaev V 2013 Science 339 1232009

  • [1] 高越, 余博丞, 郭瑞, 曹燕燕, 徐亚东. 基于相位梯度超构光栅的光学超构笼子.  , 2023, 72(2): 024209. doi: 10.7498/aps.72.20221696
    [2] 李彦敏, 陈向炜, 吴惠彬, 梅凤翔. 广义Birkhoff系统的两类广义梯度表示.  , 2016, 65(8): 080201. doi: 10.7498/aps.65.080201
    [3] 彭颖吒, 张锴, 郑百林, 李泳. 广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析.  , 2016, 65(10): 100201. doi: 10.7498/aps.65.100201
    [4] 葛伟宽, 薛纭, 楼智美. 完整力学系统的广义梯度表示.  , 2014, 63(11): 110202. doi: 10.7498/aps.63.110202
    [5] 章新友, L. J. Li, 黄永畅. 一般n阶特征量泛函的Euler-Lagrange方程及与定量因果原理、相对性原理和广义牛顿三定律的统一.  , 2014, 63(19): 190301. doi: 10.7498/aps.63.190301
    [6] 孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾. 用于相位突变界面的广义的反射定律和折射定律.  , 2013, 62(10): 104201. doi: 10.7498/aps.62.104201
    [7] 孟庆苗, 李中让, 李玉山. Barriola-Vilenkin黑洞Dirac场的广义Stefan-Boltzmann定律.  , 2010, 59(10): 6847-6850. doi: 10.7498/aps.59.6847
    [8] 孟庆苗, 蒋继建, 刘景伦, 邓德力. 动态Dilaton-Maxwell黑洞的广义Stefan-Boltzmann定律.  , 2009, 58(1): 78-82. doi: 10.7498/aps.58.78
    [9] 余和军, 夏金松, 余金中. 一种模拟倾斜折射率界面光波导的新方法.  , 2006, 55(3): 1023-1028. doi: 10.7498/aps.55.1023
    [10] 段一士, 冯世祥. 广义相对论中广义协变的角动量守恒定律.  , 1995, 44(9): 1373-1381. doi: 10.7498/aps.44.1373
    [11] 史俊杰, 潘少华. 四层异质结构的表面和界面光学声子模.  , 1994, 43(5): 790-798. doi: 10.7498/aps.43.790
    [12] 冯世祥, 李希国, 黄永畅. 对“评‘Einstein-Cartan引力理论中的广义协变守恒定律’”一文的讨论.  , 1994, 43(8): 1226-1227. doi: 10.7498/aps.43.1226
    [13] 李承尧. 评“Einstein-Cartan引力理论中的广义协变守恒定律”.  , 1993, 42(2): 193-197. doi: 10.7498/aps.42.193
    [14] 郑晓瑜, 钱祖文. 有限振幅声波在平面界面上的反射和折射.  , 1990, 39(1): 89-93. doi: 10.7498/aps.39.89
    [15] 段一士, 刘继承, 董学耕. Einstein-Cartan引力理论中的广义协变守恒定律.  , 1987, 36(6): 760-768. doi: 10.7498/aps.36.760
    [16] 吴可, 郭汉英. Kaluza理论的运动定律.  , 1982, 31(10): 1443-1448. doi: 10.7498/aps.31.1443
    [17] 陆全康. 关于部分电离等离子体的广义欧姆定律(Ⅱ).  , 1979, 28(3): 450-454. doi: 10.7498/aps.28.450
    [18] 陆全康. 关于部分电离等离子体的广义欧姆定律.  , 1977, 26(5): 417-426. doi: 10.7498/aps.26.417
    [19] 王之江, 薛鸣球. 论平面光栅单色计的光学质量.  , 1963, 19(11): 705-716. doi: 10.7498/aps.19.705
    [20] 段一士, 张敬业. 广义相对论中的能量动量守恒定律.  , 1963, 19(11): 689-704. doi: 10.7498/aps.19.689
计量
  • 文章访问数:  9725
  • PDF下载量:  441
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-13
  • 修回日期:  2016-10-30
  • 刊出日期:  2017-01-20

/

返回文章
返回
Baidu
map