-
液氮冲击中InSb面阵探测器的易碎裂特性制约着探测器的成品率,建立适用于面阵探测器全工艺流程的结构模型是分析、优化探测器结构的有效手段.本文提出了用底充胶体积收缩率来描述底充胶在恒温固化中的体积收缩现象,同时忽略固化中底充胶弹性模量的变化来建立底充胶固化模型,给出了底充胶在恒温固化中生成的热应力/应变上限值.借鉴前期提出的等效建模思路,结合底充胶固化后的自然冷却过程和随后的液氮冲击实验,建立了适用于InSb面阵探测器全工艺流程的结构分析模型.探测器历经底充胶固化、自然冷却至室温后的模拟结果与室温下拍摄的探测器形变分布照片高度符合.随后模拟液氮冲击实验,得到面阵探测器中累积的热应力/应变随温度的演变规律,热应力/应变值极值出现的温度区间与液氮冲击实验结果相符合.这表明所建模型适用于预测不同工艺阶段中面阵探测器的形变分布及演变规律.InSb infrared focal plane array(IRFPA) detector, active in 3-5 m range, has been widely used in military fields. Higher fracture probability appearing in InSb infrared focal plane arrays(IRFPAs) subjected to thermal shock test, restricts its final yield. In order to analyze and optimize the structure of InSb IRFPAs, it is necessary to create the three-dimensional structural model of InSb IRFPAs, which is employed to estimate its strain distribution appearing in the different fabricating processes. In this paper, the curing model of underfill is described by its volume contraction percentage combined with the elastic modulus of the completely cured underfill. Thus, both the von Mises stress and the Z-components of strain accumulated in the curing process of underfill are calculated. When InSb IRFPAs is naturally cooled to room temperature from the curing temperature of underfill, the Z-component of strain distribution appearing on the top surface of InSb IRFPAs is obtained with our structural model, which is identical to the deformation distribution on the top surface of InSb IRFPAs measured at room temperature. In the following thermal shock simulation, we find that the maximal von Mises stress appears at 100 K and the maximal Z-component of strain appears at 150 K, these two temperature points are located in the second half of the thermal shock process, these results indicate that the fracture of InSb chip happens more easily in liquid nitrogen shock test. This inference is consistent with the fact appearing in liquid nitrogen shock test. All these findings suggest that the proposed model is suitable to estimate the deformation distribution of InSb IRFPAs and its changing rule in its different fabricating stages.
-
Keywords:
- infrared focal plane arrays /
- InSb /
- structural stress
[1] He L, Yang D J, Ni G Q 2011 Introduction to Advanced Focal Plane Arrays(1st Ed.)(Beijing:National Defence Industry Press) p1(in Chinese)[何力, 杨定江, 倪国强2011先进焦平面技术导论(第1版)(北京:国防工业出版社)第1页]
[2] Qiu W C, Hu W D 2015 Sci. China:Phys. Mech. Astron. 58 027001
[3] Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Waves 35 25(in Chinese)[胡伟达, 梁健, 越方禹, 陈效双, 陆卫2016红外与毫米波学报35 25]
[4] Tidrow M Z, 2005 Proceedings of SPIE Bellingham, WA, March 25-28, 2005 p217
[5] Gong H M, Liu D F 2008 Infrared Laser Eng. 37 18 (in Chinese)[龚海梅, 刘大福2008红外与激光工程37 18]
[6] Meng Q D, Zhang X L, Zhang L W, L Y Q 2012 Acta Phys. Sin. 61 190701 (in Chinese)[孟庆端, 张晓玲, 张立文, 吕衍秋2012 61 190701]
[7] Zhang X L, Meng Q D, Zhang L W, L Y Q 2014 Infrared Phys. Technol. 63 28
[8] Zhang X L, Meng C, Zhang W, L Y Q, Si J J, Meng Q D 2016 Infrared Phys. Technol. 76 631
[9] Sadeghinia M, Jansen K M B, Ernst L J 2012 Microelectron. Reliab. 52 1711
[10] Sadeghinia M, Jansen K M B, Ernst L J 2012 Int. J. Adhes. Adhes. 32 82
[11] Yamaguchi H, Enomoto T, Sato T, 2014 Proceedings of ICEP Toyama, Japan April 23-25, 2014 p507
[12] Yang D G, Ernst L J, Hof C, Kiasat M S, Bisschop J, Janssen J, Kuper F, Liang Z N, Schravendeel R, Zhang G Q 2000 Microelectron. Reliab. 40 1533
[13] Jiang J, Tsao S, O'Sullivan T, Razeghi M, Brown G J 2004 Infrared Phys. Technol. 45 143
[14] He Y, Moreira B E, Overson A, Nakamura S H, Bider C, Briscoe J F 2000 Thermochim. Acta 357-358 1
[15] White G K, Collins J G 1972 J. Low Temp. Phys. 7 43
[16] Cheng X, Liu C, Silberschmidt V V 2012 Comput. Mater. Sci. 52 274
[17] Chang R W, Patrick Mccluskey F 2009 J. Electron. Mater. 38 1855
[18] Meng Q D, Yu Q, Zhang L W, L Y Q 2012 Acta Phys. Sin. 61 226103 (in Chinese)[孟庆端, 余倩, 张立文, 吕衍秋2012 61 226103]
-
[1] He L, Yang D J, Ni G Q 2011 Introduction to Advanced Focal Plane Arrays(1st Ed.)(Beijing:National Defence Industry Press) p1(in Chinese)[何力, 杨定江, 倪国强2011先进焦平面技术导论(第1版)(北京:国防工业出版社)第1页]
[2] Qiu W C, Hu W D 2015 Sci. China:Phys. Mech. Astron. 58 027001
[3] Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Waves 35 25(in Chinese)[胡伟达, 梁健, 越方禹, 陈效双, 陆卫2016红外与毫米波学报35 25]
[4] Tidrow M Z, 2005 Proceedings of SPIE Bellingham, WA, March 25-28, 2005 p217
[5] Gong H M, Liu D F 2008 Infrared Laser Eng. 37 18 (in Chinese)[龚海梅, 刘大福2008红外与激光工程37 18]
[6] Meng Q D, Zhang X L, Zhang L W, L Y Q 2012 Acta Phys. Sin. 61 190701 (in Chinese)[孟庆端, 张晓玲, 张立文, 吕衍秋2012 61 190701]
[7] Zhang X L, Meng Q D, Zhang L W, L Y Q 2014 Infrared Phys. Technol. 63 28
[8] Zhang X L, Meng C, Zhang W, L Y Q, Si J J, Meng Q D 2016 Infrared Phys. Technol. 76 631
[9] Sadeghinia M, Jansen K M B, Ernst L J 2012 Microelectron. Reliab. 52 1711
[10] Sadeghinia M, Jansen K M B, Ernst L J 2012 Int. J. Adhes. Adhes. 32 82
[11] Yamaguchi H, Enomoto T, Sato T, 2014 Proceedings of ICEP Toyama, Japan April 23-25, 2014 p507
[12] Yang D G, Ernst L J, Hof C, Kiasat M S, Bisschop J, Janssen J, Kuper F, Liang Z N, Schravendeel R, Zhang G Q 2000 Microelectron. Reliab. 40 1533
[13] Jiang J, Tsao S, O'Sullivan T, Razeghi M, Brown G J 2004 Infrared Phys. Technol. 45 143
[14] He Y, Moreira B E, Overson A, Nakamura S H, Bider C, Briscoe J F 2000 Thermochim. Acta 357-358 1
[15] White G K, Collins J G 1972 J. Low Temp. Phys. 7 43
[16] Cheng X, Liu C, Silberschmidt V V 2012 Comput. Mater. Sci. 52 274
[17] Chang R W, Patrick Mccluskey F 2009 J. Electron. Mater. 38 1855
[18] Meng Q D, Yu Q, Zhang L W, L Y Q 2012 Acta Phys. Sin. 61 226103 (in Chinese)[孟庆端, 余倩, 张立文, 吕衍秋2012 61 226103]
计量
- 文章访问数: 6392
- PDF下载量: 218
- 被引次数: 0