搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解

庞宗强 张悦 戎舟 江兵 刘瑞兰 唐超

引用本文:
Citation:

利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解

庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超

Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy

Pang Zong-Qiang, Zhang Yue, Rong Zhou, Jiang Bing, Liu Rui-Lan, Tang Chao
PDF
导出引用
  • 利用扫描隧道显微镜研究水分子在吸附有氧原子的Cu(110)表面的吸附与分解过程.室温条件下,氧原子(O)在Cu(110)表面吸附并自组装形成规则的沿[001]方向的(21)Cu-O链状结构.将吸附有氧原子的Cu(110)样品置于77 K低温条件下观察水分子的吸附与分解,发现在低温下水分子通过氢键与Cu-O链中的氧原子键合而吸附于Cu-O链的顶部和周围,吸附于Cu-O链周围的水分子自组装形成规则的六边形网状结构.通过针尖隧穿电子激发,六边形网状结构中的水分子与氧原子发生化学反应,反应生成的羟基与未参与反应的水分子键合在裸露的Cu(110)表面形成蜂窝网状结构.研究结果表明,Cu(110)表面吸附的氧原子有助于水分子在金属表面的吸附和组装,同时可以催化金属表面水分子的分解反应,对水汽转换实验研究具有一定的指导意义.
    The adsorption and dissociation of water on the oxygen pre-covered Cu(110) surface are studied with scanning tunneling microscopy (STM). At room temperature, oxygen atoms are adsorbed on the Cu(110) surface and self-assembled into ordered (21) Cu-O chains along the[001] direction. The relative proportion of clean and (21) O-strips can be tuned by the sample exposure time to oxygen gas. When the oxygen pre-covered Cu(110) sample is exposed to water molecules at 77 K, the water molecules are adsorbed at the edges and on the top of the Cu-O chains. On the bare Cu(110) surface, we observe the formation of a hexagonal structure right next to the Cu-O stripes at 77 K. This is different from the water molecule adsorption on the clean Cu(110) surface, in which water molecules are adsorbed and self-assembled into ordered zig-zag chains along the[001] direction. While on oxygen pre-covered Cu(110) surface, water molecules prefer to hydrogen bond with oxygen atoms inside the Cu-O chains and then bond with the other water molecules, forming stable hexagonal network. From our earlier STM results, we find that water forms zig-zag chains only when oxygen pre-coverage is lower than 0.125 ML. On the top of hexagonal network, we observe the bright spots and attribute them to the 2nd layer water clusters. The fact that the 2nd layer clusters form on the top of the hexagonal water-hydroxyl regions rather than at the other locations on the Cu(110) surface indicates that the mixed hexagonal network may have more H-dangling bonds that facilitate the 2nd layer growth. In order to remove the upper layer water molecules, we apply a 5 V bias voltage for scanning, for which the tunneling electrons provide enough energy for overcoming the water desorption and dissociation barrier (0.5-0.55 eV at UHV and low temperature). With the excitation of tunneling electrons from the tip, the water molecules in the hexagonal network react with oxygen atoms inside the Cu-O chains (H2O+O2OH). According to Forster proposed Bjerrum defect model, the hexagonal network is formed by water donating hydrogen to hydroxyl, in which two hydrogen atoms are located between two adjacent oxygen atoms. Our results demonstrate that the oxygen atoms pre-adsorbed on the Cu(110) surface act as nucleation centers for water adsorption and catalyze its dissociation, which is important in water gas shift reaction study. However, we still need more X-ray photoelectron spectroscopy experiments to certify whether the water molecules react with the pre-covered oxygen atoms at low temperature (below 100 K).
      通信作者: 庞宗强, zqpang@njupt.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:11604158)和江苏省自然科学基金青年科学基金(批准号:BK20140862)资助的课题.
      Corresponding author: Pang Zong-Qiang, zqpang@njupt.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11604158) and the Young Scientists Fund of the Jiangsu Province Natural Science Fund, China (Grant No. BK20140862).
    [1]

    Stamenkovic V, Mun B S, Mayrhofer K J, Ross P N, Markovic N M, Rossmeisl J, Greeley J, Norskov J K 2006Angew. Chem. Int. Ed. 45 2897

    [2]

    Stamenkovic V, Mun B S, Arenz M, Mayrhofer K J, Lucas C A, Wang G F, Ross P N, Markovic N M 2007Nature Mater. 6 241

    [3]

    Norskov J K, Bligaard T, Rossmeisl J R, Christensen C H 2009Nature Chem. 1 37

    [4]

    Chemelewski W D, Lee H C, Lin J F, Bard A J, Mullins C B 2014J. Am. Chem. Soc. 136 7

    [5]

    Doering D L, Madey T E 1982Surf. Sci. 123 305

    [6]

    Hodgson A, Haq S 2009Surf. Sci. Rep. 64 381

    [7]

    Carrasco J, Michaelides A, Forster M, Haq S, Raval R, Hodgson A 2009Nature Mater. 8 427

    [8]

    Kumagai T, Shiotari A, Okuyama H, Hatta S, Aruga T, Hamada I, Frederiksen T, Ueba H 2011Nature Mater. 11 167

    [9]

    Spitzer A, Luth H 1985Surf. Sci. 160 353

    [10]

    Ammon C, Bayer A, Steinruck H P, Held G 2003Chem. Phys. Lett. 377 163

    [11]

    Andersson K, Gomez A, Glover C, Nordlund D, Ostrom H, Schiros T, Takahashi O, Ogasawara H, Pettersson L, Nilsson A 2005Surf. Sci. 585 183

    [12]

    Yamamoto S, Andersson K, Bluhm H, Ketteler G, Starr D E, Schiros T, Ogasawara H, Pettersson L G M, Salmeron M, Nilsson A 2007J. Phys. Chem. C 111 22

    [13]

    Andersson K, Ketteler G, Bluhm H, Yamamoto S, Ogasawara H, Pettersson L, Salmeron M 2008J. Am. Chem. Soc. 130 9

    [14]

    Feibelman P J 2002Science 295 99

    [15]

    Forster M, Raval R, Hodgson A, Carrasco J, Michaelides A 2011Phys. Rev. Lett. 106 046103

    [16]

    Carrasco J, Hodgson A, Michaelides A 2012Nature Mater. 11 667

    [17]

    Jensen F, Besenbacher F, Lmsgaard E, Stensgaard I 1990Phys. Rev. B:Condensed Matter 42 14

    [18]

    Kuk Y, Chua F M, Silverman P J, Meyer J A 1990Phys. Rev. B:Condensed Matter 41 18

    [19]

    Shi Y, Byoung Y C, Salmeron M 2013J. Phys. Chem. C 117 17119

    [20]

    Pang Z Q, Duerrbeck S, Calvin K, Bertel E, Somorjai G, Salmeron M 2016J. Phys. Chem. C 120 17

    [21]

    Kumagai T, Kaizu M, Okuyama H 2009Phys. Rev. B 79 035423

    [22]

    Ren J, Meng S 2006J. Am. Chem. Soc. 128 9282

  • [1]

    Stamenkovic V, Mun B S, Mayrhofer K J, Ross P N, Markovic N M, Rossmeisl J, Greeley J, Norskov J K 2006Angew. Chem. Int. Ed. 45 2897

    [2]

    Stamenkovic V, Mun B S, Arenz M, Mayrhofer K J, Lucas C A, Wang G F, Ross P N, Markovic N M 2007Nature Mater. 6 241

    [3]

    Norskov J K, Bligaard T, Rossmeisl J R, Christensen C H 2009Nature Chem. 1 37

    [4]

    Chemelewski W D, Lee H C, Lin J F, Bard A J, Mullins C B 2014J. Am. Chem. Soc. 136 7

    [5]

    Doering D L, Madey T E 1982Surf. Sci. 123 305

    [6]

    Hodgson A, Haq S 2009Surf. Sci. Rep. 64 381

    [7]

    Carrasco J, Michaelides A, Forster M, Haq S, Raval R, Hodgson A 2009Nature Mater. 8 427

    [8]

    Kumagai T, Shiotari A, Okuyama H, Hatta S, Aruga T, Hamada I, Frederiksen T, Ueba H 2011Nature Mater. 11 167

    [9]

    Spitzer A, Luth H 1985Surf. Sci. 160 353

    [10]

    Ammon C, Bayer A, Steinruck H P, Held G 2003Chem. Phys. Lett. 377 163

    [11]

    Andersson K, Gomez A, Glover C, Nordlund D, Ostrom H, Schiros T, Takahashi O, Ogasawara H, Pettersson L, Nilsson A 2005Surf. Sci. 585 183

    [12]

    Yamamoto S, Andersson K, Bluhm H, Ketteler G, Starr D E, Schiros T, Ogasawara H, Pettersson L G M, Salmeron M, Nilsson A 2007J. Phys. Chem. C 111 22

    [13]

    Andersson K, Ketteler G, Bluhm H, Yamamoto S, Ogasawara H, Pettersson L, Salmeron M 2008J. Am. Chem. Soc. 130 9

    [14]

    Feibelman P J 2002Science 295 99

    [15]

    Forster M, Raval R, Hodgson A, Carrasco J, Michaelides A 2011Phys. Rev. Lett. 106 046103

    [16]

    Carrasco J, Hodgson A, Michaelides A 2012Nature Mater. 11 667

    [17]

    Jensen F, Besenbacher F, Lmsgaard E, Stensgaard I 1990Phys. Rev. B:Condensed Matter 42 14

    [18]

    Kuk Y, Chua F M, Silverman P J, Meyer J A 1990Phys. Rev. B:Condensed Matter 41 18

    [19]

    Shi Y, Byoung Y C, Salmeron M 2013J. Phys. Chem. C 117 17119

    [20]

    Pang Z Q, Duerrbeck S, Calvin K, Bertel E, Somorjai G, Salmeron M 2016J. Phys. Chem. C 120 17

    [21]

    Kumagai T, Kaizu M, Okuyama H 2009Phys. Rev. B 79 035423

    [22]

    Ren J, Meng S 2006J. Am. Chem. Soc. 128 9282

  • [1] 唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华. 用于扫描隧道显微镜的低噪声前置电流放大器.  , 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [2] 彭兰沁, 李小雨, 幸运, 赵涵, 邓炎滔, 于迎辉. 铜氧化层上钒氧酞菁分子的吸附构型及组装结构.  , 2024, 73(12): 120704. doi: 10.7498/aps.73.20240043
    [3] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9′-二亚呫吨分子吸附行为和石墨烯摩尔超结构.  , 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [4] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9'-二亚呫吨分子吸附行为和石墨烯摩尔超结构研究.  , 2022, 0(0): . doi: 10.7498/aps.7120221057
    [5] 杨韬, 钱仙妹, 马宏亮, 刘强, 朱文越, 郑健捷, 陈杰, 徐秋怡. 1.1 μm波段水分子的CO2加宽系数.  , 2022, 71(20): 203301. doi: 10.7498/aps.71.20220700
    [6] 朱智, 闫韶健, 段铜川, 赵妍, 孙庭钰, 李阳梅. 太赫兹电磁波调控甲烷水合物分解.  , 2021, 70(24): 248705. doi: 10.7498/aps.70.20211779
    [7] 王超, 周艳丽, 吴凡, 陈英才. 高分子链在分子刷表面吸附的Monte Carlo模拟.  , 2020, 69(16): 168201. doi: 10.7498/aps.69.20200411
    [8] 李洪, 艾倩雯, 汪鹏君, 高和蓓, 崔毅, 罗孟波. 外力驱动作用下高分子链在表面吸附性质的计算机模拟.  , 2018, 67(16): 168201. doi: 10.7498/aps.67.20180468
    [9] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟.  , 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [10] 肖文德, 刘立巍, 杨锴, 张礼智, 宋博群, 杜世萱, 高鸿钧. 氢原子吸附对金表面金属酞菁分子的吸附位置、自旋和手征性的调控.  , 2015, 64(7): 076802. doi: 10.7498/aps.64.076802
    [11] 王志萍, 吴亚敏, 鲁超, 张秀梅, 何跃娟. 飞秒强激光场中水分子的电离激发.  , 2013, 62(7): 073301. doi: 10.7498/aps.62.073301
    [12] 刘秀英, 李晓凤, 张丽英, 樊志琴, 马兴科. 甲烷在不同分子筛中吸附的理论对比研究.  , 2012, 61(14): 146802. doi: 10.7498/aps.61.146802
    [13] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究.  , 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [14] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散.  , 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [15] 黄平, 杨春. TiO2分子在GaN(0001)表面吸附的理论研究.  , 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [16] 陈明, 闵锐, 周俊明, 胡浩, 林波, 缪灵, 江建军. 碳纳米胶囊中水分子的分子动力学研究.  , 2010, 59(7): 5148-5153. doi: 10.7498/aps.59.5148
    [17] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子.  , 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [18] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究.  , 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [19] 张现仁, 沈志刚, 陈建峰, 汪文川. 乙烷在中孔分子筛MCM-41中吸附的计算机分子模拟.  , 2003, 52(1): 163-168. doi: 10.7498/aps.52.163
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究.  , 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  7732
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-13
  • 修回日期:  2016-08-23
  • 刊出日期:  2016-11-05

/

返回文章
返回
Baidu
map