搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸收多个远紫外光子生成的高次谐波的多重截止结构

俞祖卿 何峰

引用本文:
Citation:

吸收多个远紫外光子生成的高次谐波的多重截止结构

俞祖卿, 何峰

Multiple cutoffs in high harmonic generation via multi-XUV-photon absorption

Yu Zu-Qing, He Feng
PDF
导出引用
  • 本文通过数值求解含时薛定谔方程研究He+在远紫外和红外激光场作用下产生高次谐波的过程.在电子隧穿并从红外激光场获得能量后,其在与母离子碰撞过程中可能吸收额外的远紫外光子,并导致高次谐波中出现以远紫外光子能量为间隔的多重截止结构.我们进一步通过傅里叶频谱分析的方法证实了这一结构产生的物理机制;并分析了高次谐波的多重截止频率强度和远紫外强度的关系.我们的研究为产生高能量谐波提供了一种方案.
    High harmonic generation (HHG) is one of the most fundamental processes in the interaction of strong laser fields with atoms and molecules. Because of wide applications of HHG, for example, imaging atomic or molecular orbitals, visualizing chemical reactions, synthesizing a single attosecond pulse, the HHG attracts huge attentions in both theories and experiments. The HHG can be explained by the famous three-step model:first, the laser field bends the Coulomb potential and the electron tunnels out; second, the electron is accelerated in the laser field and gains kinetic energy; Third, the energetic electron recombines with the parent ion and release its energy as high energetic photons. The HHG can be tailored by controlling the each step. In this paper, we conceive a strategy to control the third step. We simulate the HHG when He+ is exposed to the combined few-cycle Ti-Sapphire (800 nm) IR femtosecond laser pulse and XUV laser pulse by numerically solving the time dependent Schrdinger equation. The simulation shows that after the electron tunnels out and gains energies from the infrared laser field, extra XUV photons may be absorbed during the electron and parent ion recombination, contributing multiple cutoffs separated by XUV photon energies in the high harmonic spectrum. This scenario is confirmed by time-delay-dependent HHG in the time-frequency representation, and by the power scaling of the cutoffs' intensities as a function of the XUV intensity.
      通信作者: 何峰, fhe@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11104180,11175120,11121504,11322438,11574205)资助的课题.
      Corresponding author: He Feng, fhe@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104180, 11175120, 11121504, 11322438, 11574205).
    [1]

    Babrec T, Krausz F 2000Rev. Mod. Phys. 72 545

    [2]

    Krausz F, Ivanov M 2009Rev. Mod. Phys. 81 163

    [3]

    Kohler M C, Pfeifer T, Hatsagortsyan K Z, Keitel C H 2012Adv. At. Mol. Opt. Phys. 61 159

    [4]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004Nature 432 867

    [5]

    Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, Ruchon T, Auguste T, Diveki Z, Breger P, Maquet A, Carre B, Taieb R, Salieres P 2010Nature Physics 6 200

    [6]

    Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P, Ivanov M Y 2009Nature 460 972

    [7]

    Wöner H J, Bertrand J B, Kartashov D V, Corkum P B, Villeneuve D M 2010Nature 466 604

    [8]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silvestri S D, Nisoli M 2006Science 314 443

    [9]

    Pfeifer T, Jullien A, Abel M J, Nagel P M, Gallmann L, Neumark D M, Leone S R 2007Optics Express 15 17120

    [10]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008Science 320 1614

    [11]

    Mashiko H, Gilbertson S, Li S, Khan S D, Shakya M M, Moon E, Chang Z 2008Phys. Rev. Lett. 100 103906

    [12]

    Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010Nature Photonics 4 875

    [13]

    Krause J L, Schafer K J, Kulander K C 1992Phys. Rev. Lett. 68 3535

    [14]

    Corkum P B 1993Phys. Rev. Lett. 71 1994

    [15]

    Liu J C, Kohler M C, Keitel C H, Hatsagortsyan K Z 2011Phys. Rev. A 84 063817

    [16]

    Zeng Z, Li R, Cheng Y, Yu W, Xu Z 2002Physica Scripta 66 321

    [17]

    Ishikawa K 2003Phys. Rev. Lett. 91 043002

    [18]

    Heinrich A, Kornelis W, Anscombe M P, Hauri C P, Schlup P, Biegert J, Keller U 2006J. Phys. B 39 S275

    [19]

    Takahashi E J, Kanai T, Ishikawa K L, Nabekawa Y, Midorikawa K 2007Phys. Rev. Lett. 99 053904

    [20]

    Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J, Nam C H 2005Phys. Rev. Lett. 94 243901

    [21]

    Lan P, Lu P, Cao W, Li Y, Wang X 2007Phys. Rev. A 76 051801

    [22]

    Zeng Z, Cheng Y, Song X, Li R, Xu Z 2007Phys. Rev. Lett. 98 203901

    [23]

    Chipperfield L E, Robinson J S, Tisch J W G, Marangos J P 2009Phys. Rev. Lett. 102 063003

    [24]

    Wu J, Zhang G T, Xia C L, Liu X S 2010Phys. Rev. A 82 013411

    [25]

    Kohler M, Hatsagortsyan K Z 2013JOSA B 30 57

    [26]

    Dudovich N, Smirnova O, Levesque J, Mairesse Y, Ivanov M Y, Villeneuve D M, Corkum P B 2006Nature Physics 2 781

    [27]

    Klaiber M, Kohler M C, Hatsagortsyan K Z, Keitel C H 2012Phys. Rev. A 85 063829

    [28]

    Adams B W, Buth C, Cavaletto S M, Evers J, Harman Z, Keitel C H, Palffy A, Picon A, Röhlsberger R, Rostovtsev Y, Kenji Y 2013J. Mod. Opt. 60 2

    [29]

    Kohler M C, Keitel C H, Hatsagortsyan K Z 2011Optics Express 19 4411

    [30]

    Fleischer A 2008Phys. Rev. A 78 053413

    [31]

    Buth C, Kohler M, Ullrich J, Keitel C H 2011Opt. Lett. 36 3530

    [32]

    Buth C 2015Eur. Phys. J. D 69 234

    [33]

    Buth C, He F, Ullrich J, Keitel C H, Hatsagortsyan K Z 2013Phys. Rev. A 88 033848

    [34]

    He F 2012Phys. Rev. A 86 063415

    [35]

    Kohler M C, Ott C, Raith P, Heck R, Schlegel I, Keitel C H, Pfeifer T 2010Phys. Rev. Lett. 105 203902

    [36]

    Popruzhenko S V, Zaretsky D F, Becker W 2010Phys. Rev. A 81 063417

    [37]

    Bertrand J B, Wörner H J, Bandulet H C, Bisson E, Spanner M, Kieffer J C, Villeneuve D M, Corkum P B 2011Phys. Rev. Lett. 106 023001

    [38]

    Hickstein D D, Ranitovic P, Witte S, Tong X M, Huismans Y, Arpin P, Zhou X, Keister K E, Hogle C W, Zhang B, Ding C, Johnsson P, Toshima N, Vrakking M J J, Murnane M M, Kapteyn H C 2012Phys. Rev. Lett. 109 073004

    [39]

    Tong X M, Ranitovic P, Hickstein D D, Murnane M M, Kapteyn H C, Toshima N 2013Phys. Rev. A 88 013410

    [40]

    Sarachik E S, Schappert G T 1970Phys. Rev. D 1 2738

    [41]

    He F, Yu W, Lu P, Xu H, Qian L, Shen B, Yuan X, Li R, Xu Z 2003Phys. Rev. E 68 046407

    [42]

    Smirnova O, Patchkovskii S, Spanner M 2007Phys. Rev. Lett. 98 123001

  • [1]

    Babrec T, Krausz F 2000Rev. Mod. Phys. 72 545

    [2]

    Krausz F, Ivanov M 2009Rev. Mod. Phys. 81 163

    [3]

    Kohler M C, Pfeifer T, Hatsagortsyan K Z, Keitel C H 2012Adv. At. Mol. Opt. Phys. 61 159

    [4]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004Nature 432 867

    [5]

    Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, Ruchon T, Auguste T, Diveki Z, Breger P, Maquet A, Carre B, Taieb R, Salieres P 2010Nature Physics 6 200

    [6]

    Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P, Ivanov M Y 2009Nature 460 972

    [7]

    Wöner H J, Bertrand J B, Kartashov D V, Corkum P B, Villeneuve D M 2010Nature 466 604

    [8]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silvestri S D, Nisoli M 2006Science 314 443

    [9]

    Pfeifer T, Jullien A, Abel M J, Nagel P M, Gallmann L, Neumark D M, Leone S R 2007Optics Express 15 17120

    [10]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008Science 320 1614

    [11]

    Mashiko H, Gilbertson S, Li S, Khan S D, Shakya M M, Moon E, Chang Z 2008Phys. Rev. Lett. 100 103906

    [12]

    Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010Nature Photonics 4 875

    [13]

    Krause J L, Schafer K J, Kulander K C 1992Phys. Rev. Lett. 68 3535

    [14]

    Corkum P B 1993Phys. Rev. Lett. 71 1994

    [15]

    Liu J C, Kohler M C, Keitel C H, Hatsagortsyan K Z 2011Phys. Rev. A 84 063817

    [16]

    Zeng Z, Li R, Cheng Y, Yu W, Xu Z 2002Physica Scripta 66 321

    [17]

    Ishikawa K 2003Phys. Rev. Lett. 91 043002

    [18]

    Heinrich A, Kornelis W, Anscombe M P, Hauri C P, Schlup P, Biegert J, Keller U 2006J. Phys. B 39 S275

    [19]

    Takahashi E J, Kanai T, Ishikawa K L, Nabekawa Y, Midorikawa K 2007Phys. Rev. Lett. 99 053904

    [20]

    Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J, Nam C H 2005Phys. Rev. Lett. 94 243901

    [21]

    Lan P, Lu P, Cao W, Li Y, Wang X 2007Phys. Rev. A 76 051801

    [22]

    Zeng Z, Cheng Y, Song X, Li R, Xu Z 2007Phys. Rev. Lett. 98 203901

    [23]

    Chipperfield L E, Robinson J S, Tisch J W G, Marangos J P 2009Phys. Rev. Lett. 102 063003

    [24]

    Wu J, Zhang G T, Xia C L, Liu X S 2010Phys. Rev. A 82 013411

    [25]

    Kohler M, Hatsagortsyan K Z 2013JOSA B 30 57

    [26]

    Dudovich N, Smirnova O, Levesque J, Mairesse Y, Ivanov M Y, Villeneuve D M, Corkum P B 2006Nature Physics 2 781

    [27]

    Klaiber M, Kohler M C, Hatsagortsyan K Z, Keitel C H 2012Phys. Rev. A 85 063829

    [28]

    Adams B W, Buth C, Cavaletto S M, Evers J, Harman Z, Keitel C H, Palffy A, Picon A, Röhlsberger R, Rostovtsev Y, Kenji Y 2013J. Mod. Opt. 60 2

    [29]

    Kohler M C, Keitel C H, Hatsagortsyan K Z 2011Optics Express 19 4411

    [30]

    Fleischer A 2008Phys. Rev. A 78 053413

    [31]

    Buth C, Kohler M, Ullrich J, Keitel C H 2011Opt. Lett. 36 3530

    [32]

    Buth C 2015Eur. Phys. J. D 69 234

    [33]

    Buth C, He F, Ullrich J, Keitel C H, Hatsagortsyan K Z 2013Phys. Rev. A 88 033848

    [34]

    He F 2012Phys. Rev. A 86 063415

    [35]

    Kohler M C, Ott C, Raith P, Heck R, Schlegel I, Keitel C H, Pfeifer T 2010Phys. Rev. Lett. 105 203902

    [36]

    Popruzhenko S V, Zaretsky D F, Becker W 2010Phys. Rev. A 81 063417

    [37]

    Bertrand J B, Wörner H J, Bandulet H C, Bisson E, Spanner M, Kieffer J C, Villeneuve D M, Corkum P B 2011Phys. Rev. Lett. 106 023001

    [38]

    Hickstein D D, Ranitovic P, Witte S, Tong X M, Huismans Y, Arpin P, Zhou X, Keister K E, Hogle C W, Zhang B, Ding C, Johnsson P, Toshima N, Vrakking M J J, Murnane M M, Kapteyn H C 2012Phys. Rev. Lett. 109 073004

    [39]

    Tong X M, Ranitovic P, Hickstein D D, Murnane M M, Kapteyn H C, Toshima N 2013Phys. Rev. A 88 013410

    [40]

    Sarachik E S, Schappert G T 1970Phys. Rev. D 1 2738

    [41]

    He F, Yu W, Lu P, Xu H, Qian L, Shen B, Yuan X, Li R, Xu Z 2003Phys. Rev. E 68 046407

    [42]

    Smirnova O, Patchkovskii S, Spanner M 2007Phys. Rev. Lett. 98 123001

  • [1] 张春艳. H离子团簇高次谐波平台展宽与团簇膨胀.  , 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [2] 魏博宁, 焦志宏, 周效信. 非对称波形激光驱动的氢原子高次谐波频移及控制.  , 2022, 71(7): 073201. doi: 10.7498/aps.71.20212146
    [3] 姚惠东, 崔波, 马思琦, 余超, 陆瑞锋. 原子错位堆栈增强双层MoS2高次谐波产率.  , 2021, 70(13): 134207. doi: 10.7498/aps.70.20210731
    [4] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置.  , 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [5] 范鑫, 梁红静, 单立宇, 闫博, 高庆华, 马日, 丁大军. 基于高次谐波产生的极紫外偏振涡旋光.  , 2020, 69(4): 044203. doi: 10.7498/aps.69.20190834
    [6] 蔡怀鹏, 高健, 李博原, 刘峰, 陈黎明, 远晓辉, 陈民, 盛政明, 张杰. 相对论圆偏振激光与固体靶作用产生高次谐波.  , 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [7] 李夏至, 邹德滨, 周泓宇, 张世杰, 赵娜, 余德尧, 卓红斌. 等离子体光栅靶的表面粗糙度对高次谐波产生的影响.  , 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [8] 唐蓉, 王国利, 李小勇, 周效信. 红外激光场中共振结构原子对极紫外光脉冲的压缩效应.  , 2016, 65(10): 103202. doi: 10.7498/aps.65.103202
    [9] 罗香怡, 刘海凤, 贲帅, 刘学深. 非均匀激光场中氢分子离子高次谐波的增强.  , 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [10] 管仲, 李伟, 王国利, 周效信. 激光驱动晶体发射高次谐波的特性研究.  , 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [11] 余朝, 孙真荣, 郭东升. 高次谐波的Guo-Åberg-Crasemann理论及其截断定律.  , 2015, 64(12): 124207. doi: 10.7498/aps.64.124207
    [12] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究.  , 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [13] 陈高, 杨玉军, 郭福明. 晶体环境下高次谐波谱的截止频率分析.  , 2013, 62(8): 083202. doi: 10.7498/aps.62.083202
    [14] 曹卫军, 成春芝, 周效信. 原子在双色组合场中产生高次谐波的转换效率与激光波长的关系.  , 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [15] 崔磊, 王小娟, 王帆, 曾祥华. 脉冲激光偏振方向对氧分子高次谐波的影响——基于含时密度泛函理论的模拟.  , 2010, 59(1): 317-321. doi: 10.7498/aps.59.317
    [16] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响.  , 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [17] 崔 磊, 顾 斌, 滕玉永, 胡永金, 赵 江, 曾祥华. 脉冲激光偏振方向对氮分子高次谐波的影响--基于含时密度泛函理论的模拟.  , 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [18] 张秋菊, 盛政明, 张 杰. 超短脉冲强激光与固体靶作用产生的高次谐波红移.  , 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [19] 王大威, 刘婷婷, 杨宏, 蒋红兵, 龚旗煌. 介质的非均匀性对高次谐波影响的研究.  , 2002, 51(9): 2034-2037. doi: 10.7498/aps.51.2034
    [20] 喻 胜, 李宏福, 谢仲怜, 罗 勇. 渐变复合腔回旋管高次谐波注-波互作用非线性模拟.  , 2000, 49(12): 2455-2459. doi: 10.7498/aps.49.2455
计量
  • 文章访问数:  5553
  • PDF下载量:  315
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-18
  • 修回日期:  2016-11-08
  • 刊出日期:  2016-11-05

/

返回文章
返回
Baidu
map