-
通过推导椭圆线的菲涅耳衍射分布,得到了形如Pearcey函数的数学表达式.通过数值模拟和实验产生,发现椭圆光环经菲涅耳衍射后形成的Pearcey光束外形上很像两个经典Pearcey光束面对面组合而成,我们把它命名为双Pearcey光束,这是形式不变Pearcey光束家族的新成员.随后,利用数学突变理论,给出了双Pearcey光束所具有的光学拓扑结构的数学机理和相应表达式.
-
关键词:
- 双Pearcey光束 /
- 菲涅耳衍射 /
- 突变理论
We present a theoretical expression in the form of the Pearcey function by deducing the Fresnel diffraction distribution of an elliptic line. Then, we numerically simulate and experimentally generate this kind of new Pearcey beams by using the Fresnel diffraction of optical ellipse line. This kind of beams can be referred to as Bi-Pearcey beams because their appearance of the topological structure is very similar to the combination of two face-to-face classical Pearcey beams. It is no doubt that so-called Bi-Pearcey beams are the new member of a family of form-invariant Pearcey beams. Subsequently, we also provide the theoretical mechanism of generating Bi-Pearcey beams based on the Zeeman catastrophe machine of catastrophic theory. By solving the critical equation of potential function of Bi-Pearcey beams generated by an ellipse line, we find that the optical morphogenesis of Bi-Pearcey beams is determined by the number of roots of the critical equation. The critical equation of potential function of Bi-Pearcey beams is a classical Cartan equation, which has at most three real roots. For the Fresnel diffraction of ellipse line, three real roots of the critical equation are corresponding to three stable points and represent three diffraction lines, hence they can be used to examine the optical topological structure of Bi-Pearcey beams. By choosing the appropriate control variable of Bi-Pearcey beams, two diffraction lines of an ellipse line overlap, and the strong caustic line of Bi-Pearcey beams is correspondingly generated when the two of the three real roots of the critical equation are equal. If the three real roots of the critical equation are all equal, the strongest cusps of Bi-Pearcey beams are generated, accordingly. Moreover, the equation of the caustic line and their positions of four cusps of Bi-Pearcey beams are given by solving the control variable equation of Bi-Pearcey beams. In conclusion, we elucidate the mathematical mechanism of topical morphogenesis of Bi-Pearcey beams based on catastrophic theory.-
Keywords:
- Bi-Pearcey beams /
- Fresnel diffraction /
- catastrophe theory
[1] Durnin J 1987 Phys. Rev. Lett. 58 1499
[2] Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901
[3] Lorenser D, Singe C, Curatolo A, Sampson D D 2014 Opt. Lett. 39 548
[4] Yan Z, Jureller J E, Sweet J, Guffey M J, Pelton M, Scherer N F 2012 Nano Lett. 12 5155
[5] Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229
[6] Vettenburg T, Dalgarno H I C, Nylk J, Coll-Lladó C, Ferrier D E K, Cizmár T, Gunn-Moore F J, Dholakia K 2014 Nat. Methods 11 541
[7] Born M, Wolf E(translated by Yang J S) 2006 Principles of Optics (Beijing:Electronic Industry Press)(in Chinese)[波恩, 沃耳夫著(杨葭荪译) 2006光学原理(北京:电子工业出版社)]
[8] Gutiérrez-Vega J C, Iturbe-Castillo M D, Chávez-Cerda S 2000 Opt. Lett. 25 1493
[9] Siegman A E 1986 Lasers (Mill Valley:University Science Books)
[10] Ring J D, Lindberg J, Mourka A, Mazilu M, Dholakia K, Dennis M R 2012 Opt. Express 20 18955
[11] Ren Z J, Li X D, Jin H Z 2015 Acta Phys. Sin. 64 234205(in Chinese)[任志君, 李晓东, 金洪震2015 64 234205]
[12] Kovalev A A, Kotlyar V V, Zaskanov S G, Porfirev A P 2015 J. Opt. 17 035604
[13] Poston T, Stewart I 1976 Catastrophe Theory and its Applications (London:Pitman Publishing)
[14] Stamens J J, Spjelkavik B 1983 Opt. Acta 30 1331
[15] Editing Group for Math Manual 1979 Math Manual (Beijing:Higher Education Press)(in Chinese)[数学手册编写组1979数学手册(北京:高等教育出版社)]
[16] Nye J, Wright F J 1999 Natural Focusing and Fine Structure of Light:Caustics and Wave Dislocations (Bristol:Institute of Physics Publishing)
[17] Vallée O, Soares M 2004 Airy Functions and Applications to Physics (London:Imperial College Press)
[18] Le Y Y, Xiao H, Wang Z X, Wu M 2013 Acta Phys. Sin. 62 044205(in Chinese)[乐阳阳, 肖寒, 王子潇, 吴敏2013 62 044205]
[19] Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979
-
[1] Durnin J 1987 Phys. Rev. Lett. 58 1499
[2] Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901
[3] Lorenser D, Singe C, Curatolo A, Sampson D D 2014 Opt. Lett. 39 548
[4] Yan Z, Jureller J E, Sweet J, Guffey M J, Pelton M, Scherer N F 2012 Nano Lett. 12 5155
[5] Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229
[6] Vettenburg T, Dalgarno H I C, Nylk J, Coll-Lladó C, Ferrier D E K, Cizmár T, Gunn-Moore F J, Dholakia K 2014 Nat. Methods 11 541
[7] Born M, Wolf E(translated by Yang J S) 2006 Principles of Optics (Beijing:Electronic Industry Press)(in Chinese)[波恩, 沃耳夫著(杨葭荪译) 2006光学原理(北京:电子工业出版社)]
[8] Gutiérrez-Vega J C, Iturbe-Castillo M D, Chávez-Cerda S 2000 Opt. Lett. 25 1493
[9] Siegman A E 1986 Lasers (Mill Valley:University Science Books)
[10] Ring J D, Lindberg J, Mourka A, Mazilu M, Dholakia K, Dennis M R 2012 Opt. Express 20 18955
[11] Ren Z J, Li X D, Jin H Z 2015 Acta Phys. Sin. 64 234205(in Chinese)[任志君, 李晓东, 金洪震2015 64 234205]
[12] Kovalev A A, Kotlyar V V, Zaskanov S G, Porfirev A P 2015 J. Opt. 17 035604
[13] Poston T, Stewart I 1976 Catastrophe Theory and its Applications (London:Pitman Publishing)
[14] Stamens J J, Spjelkavik B 1983 Opt. Acta 30 1331
[15] Editing Group for Math Manual 1979 Math Manual (Beijing:Higher Education Press)(in Chinese)[数学手册编写组1979数学手册(北京:高等教育出版社)]
[16] Nye J, Wright F J 1999 Natural Focusing and Fine Structure of Light:Caustics and Wave Dislocations (Bristol:Institute of Physics Publishing)
[17] Vallée O, Soares M 2004 Airy Functions and Applications to Physics (London:Imperial College Press)
[18] Le Y Y, Xiao H, Wang Z X, Wu M 2013 Acta Phys. Sin. 62 044205(in Chinese)[乐阳阳, 肖寒, 王子潇, 吴敏2013 62 044205]
[19] Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979
计量
- 文章访问数: 6324
- PDF下载量: 231
- 被引次数: 0