搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电动帆平行双导线鞘层特性与受力分析

陈茂林 夏广庆 魏延明 于洋 孙安邦 毛根旺

引用本文:
Citation:

电动帆平行双导线鞘层特性与受力分析

陈茂林, 夏广庆, 魏延明, 于洋, 孙安邦, 毛根旺

Charateristics and stress analysis of sheath of parallel conducting tethers for the electric sail

Chen Mao-Lin, Xia Guang-Qing, Wei Yan-Ming, Yu Yang, Sun An-Bang, Mao Gen-Wang
PDF
导出引用
  • 太阳风等离子体与偏压导线电场间的相互作用是电动帆推力器的基本工作机理.采用二维粒子模拟方法分别对垂直入射和斜入射太阳风等离子体与平行双导线间的动量传递过程开展数值模拟,对比分析了不同条件下耦合电场及偏转离子的运动轨迹及其对动量传递的影响.结果表明:偏压导线的高电势会在导线附近形成离子空洞并向下游扩展;两根导线间由于鞘层相互影响而形成离子阱结构,减速、滞止、反射部分离子;在1 kV的导线偏压和太阳风垂直入射条件下,两根帆导线受力约为30 nN/m;随着导线间距增大,离子阱中约束离子数量表现出先增大后减小的趋势,电动帆推力亦随之先增大后减小;太阳风斜入射情况研究,首次从等离子体动力学仿真出发,确定了电动帆推力受帆姿态影响,可分为沿太阳风方向的水平推力和垂直太阳风方向的升力两个分量;明确了升力与俯仰角α的关系,当电动帆导线平面顺着太阳风方向右倾时,升力小于0,而当电动帆导线平面逆着太阳风方向左倾时,升力大于0;明确了推力角θ变化趋势和范围,随俯仰角α的增大呈现出先减小后增大的非线性变化趋势,大小为-40°θ< 40°.研究结果明确了电动帆的推力矢量及其随姿态的变化,对电动帆航天器轨道动力学的优化设计提供了重要参考.
    The interaction between the solar wind plasma and the bias electric field of long conducting tethers is the basic operation mechanism of the electric sail thruster. A two-dimensional (2D) full particle model is established to investigate the momentum transfer process between the solar wind plasma and parallel conducting tethers, while normal incidence and oblique incidence of the solar wind are taken into account. To ensure the accuracy and stability of the present PIC method, we take a grid space step of 2.5 m that is smaller than the Debye length and a time step of 162.5 ns that is limited by the plasma frequency. The main features including the spatial electric potential and ion number density distribution are represented under the influences of tether distance and solar wind incidence angle, in addition, the effect of the bias voltage on momentum transfer process is analyzed. At a steady state, the number of electrons is slightly higher than that of ions, owing to the attraction of the positive potential of tethers. Different tether distances (i.e., from 15 m to 85 m) are taken and show that a high potential bias voltage of tethers can slow down, cease, reflect and deflect a large number of ions, resulting in a plasma cavity in the vicinity of the tethers. An ion trap forms and captures many ions, owing to the interaction between the sheaths of the two conducting tethers. In general, a bias voltage of 1 kV produces a thrust of 30 nN/m with two tethers, on the assumption that the solar wind incomes normally. If we increase the distance between two conducting tethers, both trap captured ions and thrust show a first increase and then decrease trend. Furthermore, the investigations of the solar wind oblique incidence show that the thrust of the electric sail is determined by its attitude and is separated into force components in two directions:a horizontal force that is along the solar wind and a lift force that is perpendicular to the solar wind. We conclude that the present work first shows that the lift force is less than zero when the tether plane leans to the right, and greater than zero if the tether plane turns left. The increasing of the pitch angle leads to a variation of the thrust from -40° to 40°. The presented dependence of the thrust on the attitude of the tether plane provides an important reference for the optimal design of the orbit dynamics of the electric sail spacecraft.
      通信作者: 陈茂林, chenmaolin@nwpu.edu.cn;gq.xia@dlut.edu.cn ; 夏广庆, chenmaolin@nwpu.edu.cn;gq.xia@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51276147)、中央高校基本科研业务费(批准号:3102014KYJD005)和西北工业大学基础研究基金(批准号:NPU-FFR-JC20120201)资助的课题.
      Corresponding author: Chen Mao-Lin, chenmaolin@nwpu.edu.cn;gq.xia@dlut.edu.cn ; Xia Guang-Qing, chenmaolin@nwpu.edu.cn;gq.xia@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51276147), the Fundamental Research Fund for the Central Universities, China (Grant No. 3102014KYJD005), and the Fundamental Research Foundation Northwestern Polytechnical University, China (Grant No. NPU-FFR-JC20120201).
    [1]

    Janhunen P 2004 J. Propul. Power 20 763

    [2]

    Mengali G, Quarta A A, Janhunen P 2008 J. Spacecraft Rockets 45 122

    [3]

    Janhunen P, Toivanen P, Envall J, Merikallio S, Montesanti G, Amo J G, Kvell U, Noorma M, Lätt S 2014 Proc. Est. Acad. Sci. 63 267

    [4]

    Envall J, Janhunen P, Toivanen P, Pajusalu M, Ilbis E, Kalde J, Averin M, Kuuste H, Laizans K, Allik V, Rauhala T, Seppänen H, Kiprich S, Ukkonen J, Hœggström E, Kalvas T, Tarvainen O, Kauppinen J, Nuottajärvi A, Koivisto H 2014 Proc. Est. Acad. Sci. 63 210

    [5]

    Slavinskis A, Pajusalu M, Kuuste H, Ilbis E, Eenmäe T, Snter I, Laizàns K, Ehrpais H, Liias P, Kulu E, Viru J, Kalde J, Kvell U, Ktt J, Zàlite K, Kahn K, Lätt S, Envall J, Toivanen P, Polkko J, Janhunen P, Rosta R, Kalvas T, Vendt R, Allik V, Noorma M 2015 IEEE Aerosp. Electron. Syst. Mag. 30 13

    [6]

    Huo M Y, Peng F J, Zhao J, Xie S B, Qi N M 2015 J. Astronautics 36 1363 (in Chinese)[霍明英, 彭福军, 赵钧, 谢少彪, 齐乃明2015宇航学报36 1363]

    [7]

    Mengali G, Quarta A A 2009 J. Guid. Control. Dyna. 32 1018

    [8]

    Wang Y, Wei Y M, Li Y, Yu Y, Bian B X 2015 Chin. Space Sci. Technol. 32 26 (in Chinese)[王昱, 魏延明, 李永, 于洋, 边炳秀2015中国空间科学技术32 26]

    [9]

    Sanchez-Torres A 2014 Contrib. Plasma Phys. 54 314

    [10]

    Janhunen P, Sandroos A 2007 Ann. Geophys. 25 755

    [11]

    Janhunen P 2011 Acta Astronaut. 68 567

    [12]

    Janhunen P 2012 ASP Conference Series 459 271

    [13]

    Toivanen P K, Janhunen P 2013 J. Propul. Power 29 178

    [14]

    Xiong M, Li X 2012 Solar Phys. 279 231

    [15]

    Bame S J, Mccomas D J, Barraclough B L, Phillips J L, Sofaly K J, Chavez J C, Goldstein B E, Sakurai R K 1992 Astron. Astrophys. Suppl. Ser. 92 237

    [16]

    Turner M M 2006 Phys. Plasmas 13 033506

    [17]

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901 (in Chinese)[陈茂林, 夏广庆, 毛根旺2014 63 182901]

    [18]

    Sun A B, Becker M M, Loffhagen D 2016 Comput. Phys. Commun. 206 35

    [19]

    Yamaguchi K, Yamakawa H 2016 J. Astronaut. Sci. 63 1

  • [1]

    Janhunen P 2004 J. Propul. Power 20 763

    [2]

    Mengali G, Quarta A A, Janhunen P 2008 J. Spacecraft Rockets 45 122

    [3]

    Janhunen P, Toivanen P, Envall J, Merikallio S, Montesanti G, Amo J G, Kvell U, Noorma M, Lätt S 2014 Proc. Est. Acad. Sci. 63 267

    [4]

    Envall J, Janhunen P, Toivanen P, Pajusalu M, Ilbis E, Kalde J, Averin M, Kuuste H, Laizans K, Allik V, Rauhala T, Seppänen H, Kiprich S, Ukkonen J, Hœggström E, Kalvas T, Tarvainen O, Kauppinen J, Nuottajärvi A, Koivisto H 2014 Proc. Est. Acad. Sci. 63 210

    [5]

    Slavinskis A, Pajusalu M, Kuuste H, Ilbis E, Eenmäe T, Snter I, Laizàns K, Ehrpais H, Liias P, Kulu E, Viru J, Kalde J, Kvell U, Ktt J, Zàlite K, Kahn K, Lätt S, Envall J, Toivanen P, Polkko J, Janhunen P, Rosta R, Kalvas T, Vendt R, Allik V, Noorma M 2015 IEEE Aerosp. Electron. Syst. Mag. 30 13

    [6]

    Huo M Y, Peng F J, Zhao J, Xie S B, Qi N M 2015 J. Astronautics 36 1363 (in Chinese)[霍明英, 彭福军, 赵钧, 谢少彪, 齐乃明2015宇航学报36 1363]

    [7]

    Mengali G, Quarta A A 2009 J. Guid. Control. Dyna. 32 1018

    [8]

    Wang Y, Wei Y M, Li Y, Yu Y, Bian B X 2015 Chin. Space Sci. Technol. 32 26 (in Chinese)[王昱, 魏延明, 李永, 于洋, 边炳秀2015中国空间科学技术32 26]

    [9]

    Sanchez-Torres A 2014 Contrib. Plasma Phys. 54 314

    [10]

    Janhunen P, Sandroos A 2007 Ann. Geophys. 25 755

    [11]

    Janhunen P 2011 Acta Astronaut. 68 567

    [12]

    Janhunen P 2012 ASP Conference Series 459 271

    [13]

    Toivanen P K, Janhunen P 2013 J. Propul. Power 29 178

    [14]

    Xiong M, Li X 2012 Solar Phys. 279 231

    [15]

    Bame S J, Mccomas D J, Barraclough B L, Phillips J L, Sofaly K J, Chavez J C, Goldstein B E, Sakurai R K 1992 Astron. Astrophys. Suppl. Ser. 92 237

    [16]

    Turner M M 2006 Phys. Plasmas 13 033506

    [17]

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901 (in Chinese)[陈茂林, 夏广庆, 毛根旺2014 63 182901]

    [18]

    Sun A B, Becker M M, Loffhagen D 2016 Comput. Phys. Commun. 206 35

    [19]

    Yamaguchi K, Yamakawa H 2016 J. Astronaut. Sci. 63 1

  • [1] 王宬朕, 董全力, 刘苹, 吴奕莹, 盛政明, 张杰. 激光等离子体中高能电子各向异性压强的粒子模拟.  , 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [2] 新波, 张小宁, 李韵, 崔万照, 张洪太, 李永东, 王洪广, 翟永贵, 刘纯亮. 多载波微放电阈值的粒子模拟及分析.  , 2017, 66(15): 157901. doi: 10.7498/aps.66.157901
    [3] 王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东. 基于频域电磁场的微波器件微放电阈值快速粒子模拟.  , 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [4] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法.  , 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [5] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟.  , 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [6] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真.  , 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [7] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮. 微波阶梯阻抗变换器低气压电晕放电粒子模拟.  , 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [8] 陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟. 气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟.  , 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [9] 陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉. 基于粒子模拟和并行遗传算法的高功率微波源优化设计.  , 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [10] 王辉辉, 刘大刚, 蒙林, 刘腊群, 杨超, 彭凯, 夏蒙重. 气体电离的全三维电磁粒子模拟/蒙特卡罗数值研究.  , 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [11] 杨超, 刘大刚, 周俊, 廖臣, 彭凯, 刘盛纲. 一种新型径向三腔同轴虚阴极振荡器全三维粒子模拟研究.  , 2011, 60(8): 084102. doi: 10.7498/aps.60.084102
    [12] 郭帆, 李永东, 王洪广, 刘纯亮, 呼义翔, 张鹏飞, 马萌. Z箍缩装置外磁绝缘传输线全尺寸粒子模拟研究.  , 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [13] 夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强. 氩气微腔放电中特性参数的数值模拟研究.  , 2011, 60(1): 015201. doi: 10.7498/aps.60.015201
    [14] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟.  , 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [15] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟.  , 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [16] 杨雁南, 杨 波, 朱金荣, 沈中华, 陆 建, 倪晓武. 真空环境下激光与固体靶冲量耦合的机理分析和数值模拟.  , 2007, 56(10): 5945-5951. doi: 10.7498/aps.56.5945
    [17] 杨 涓, 苏纬仪, 毛根旺, 夏广庆. 外加磁场微波等离子推力器内流场数值模拟.  , 2006, 55(12): 6494-6499. doi: 10.7498/aps.55.6494
    [18] 卓红斌, 胡庆丰, 刘 杰, 迟利华, 张文勇. 超短脉冲激光与稀薄等离子体相互作用的准静态粒子模拟研究.  , 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [19] 宫玉彬, 张 章, 魏彦玉, 孟凡宝, 范植开, 王文祥. 高功率微波器件中脉冲缩短现象的粒子模拟.  , 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
    [20] 简广德, 董家齐. 环形等离子体中电子温度梯度不稳定性的粒子模拟.  , 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
计量
  • 文章访问数:  5909
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-28
  • 修回日期:  2016-06-30
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map