-
太阳风等离子体与偏压导线电场间的相互作用是电动帆推力器的基本工作机理.采用二维粒子模拟方法分别对垂直入射和斜入射太阳风等离子体与平行双导线间的动量传递过程开展数值模拟,对比分析了不同条件下耦合电场及偏转离子的运动轨迹及其对动量传递的影响.结果表明:偏压导线的高电势会在导线附近形成离子空洞并向下游扩展;两根导线间由于鞘层相互影响而形成离子阱结构,减速、滞止、反射部分离子;在1 kV的导线偏压和太阳风垂直入射条件下,两根帆导线受力约为30 nN/m;随着导线间距增大,离子阱中约束离子数量表现出先增大后减小的趋势,电动帆推力亦随之先增大后减小;太阳风斜入射情况研究,首次从等离子体动力学仿真出发,确定了电动帆推力受帆姿态影响,可分为沿太阳风方向的水平推力和垂直太阳风方向的升力两个分量;明确了升力与俯仰角α的关系,当电动帆导线平面顺着太阳风方向右倾时,升力小于0,而当电动帆导线平面逆着太阳风方向左倾时,升力大于0;明确了推力角θ变化趋势和范围,随俯仰角α的增大呈现出先减小后增大的非线性变化趋势,大小为-40°θ< 40°.研究结果明确了电动帆的推力矢量及其随姿态的变化,对电动帆航天器轨道动力学的优化设计提供了重要参考.The interaction between the solar wind plasma and the bias electric field of long conducting tethers is the basic operation mechanism of the electric sail thruster. A two-dimensional (2D) full particle model is established to investigate the momentum transfer process between the solar wind plasma and parallel conducting tethers, while normal incidence and oblique incidence of the solar wind are taken into account. To ensure the accuracy and stability of the present PIC method, we take a grid space step of 2.5 m that is smaller than the Debye length and a time step of 162.5 ns that is limited by the plasma frequency. The main features including the spatial electric potential and ion number density distribution are represented under the influences of tether distance and solar wind incidence angle, in addition, the effect of the bias voltage on momentum transfer process is analyzed. At a steady state, the number of electrons is slightly higher than that of ions, owing to the attraction of the positive potential of tethers. Different tether distances (i.e., from 15 m to 85 m) are taken and show that a high potential bias voltage of tethers can slow down, cease, reflect and deflect a large number of ions, resulting in a plasma cavity in the vicinity of the tethers. An ion trap forms and captures many ions, owing to the interaction between the sheaths of the two conducting tethers. In general, a bias voltage of 1 kV produces a thrust of 30 nN/m with two tethers, on the assumption that the solar wind incomes normally. If we increase the distance between two conducting tethers, both trap captured ions and thrust show a first increase and then decrease trend. Furthermore, the investigations of the solar wind oblique incidence show that the thrust of the electric sail is determined by its attitude and is separated into force components in two directions:a horizontal force that is along the solar wind and a lift force that is perpendicular to the solar wind. We conclude that the present work first shows that the lift force is less than zero when the tether plane leans to the right, and greater than zero if the tether plane turns left. The increasing of the pitch angle leads to a variation of the thrust from -40° to 40°. The presented dependence of the thrust on the attitude of the tether plane provides an important reference for the optimal design of the orbit dynamics of the electric sail spacecraft.
-
Keywords:
- space propulsion /
- electric sail /
- plasma simulation /
- particle in cell
[1] Janhunen P 2004 J. Propul. Power 20 763
[2] Mengali G, Quarta A A, Janhunen P 2008 J. Spacecraft Rockets 45 122
[3] Janhunen P, Toivanen P, Envall J, Merikallio S, Montesanti G, Amo J G, Kvell U, Noorma M, Lätt S 2014 Proc. Est. Acad. Sci. 63 267
[4] Envall J, Janhunen P, Toivanen P, Pajusalu M, Ilbis E, Kalde J, Averin M, Kuuste H, Laizans K, Allik V, Rauhala T, Seppänen H, Kiprich S, Ukkonen J, Hœggström E, Kalvas T, Tarvainen O, Kauppinen J, Nuottajärvi A, Koivisto H 2014 Proc. Est. Acad. Sci. 63 210
[5] Slavinskis A, Pajusalu M, Kuuste H, Ilbis E, Eenmäe T, Snter I, Laizàns K, Ehrpais H, Liias P, Kulu E, Viru J, Kalde J, Kvell U, Ktt J, Zàlite K, Kahn K, Lätt S, Envall J, Toivanen P, Polkko J, Janhunen P, Rosta R, Kalvas T, Vendt R, Allik V, Noorma M 2015 IEEE Aerosp. Electron. Syst. Mag. 30 13
[6] Huo M Y, Peng F J, Zhao J, Xie S B, Qi N M 2015 J. Astronautics 36 1363 (in Chinese)[霍明英, 彭福军, 赵钧, 谢少彪, 齐乃明2015宇航学报36 1363]
[7] Mengali G, Quarta A A 2009 J. Guid. Control. Dyna. 32 1018
[8] Wang Y, Wei Y M, Li Y, Yu Y, Bian B X 2015 Chin. Space Sci. Technol. 32 26 (in Chinese)[王昱, 魏延明, 李永, 于洋, 边炳秀2015中国空间科学技术32 26]
[9] Sanchez-Torres A 2014 Contrib. Plasma Phys. 54 314
[10] Janhunen P, Sandroos A 2007 Ann. Geophys. 25 755
[11] Janhunen P 2011 Acta Astronaut. 68 567
[12] Janhunen P 2012 ASP Conference Series 459 271
[13] Toivanen P K, Janhunen P 2013 J. Propul. Power 29 178
[14] Xiong M, Li X 2012 Solar Phys. 279 231
[15] Bame S J, Mccomas D J, Barraclough B L, Phillips J L, Sofaly K J, Chavez J C, Goldstein B E, Sakurai R K 1992 Astron. Astrophys. Suppl. Ser. 92 237
[16] Turner M M 2006 Phys. Plasmas 13 033506
[17] Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901 (in Chinese)[陈茂林, 夏广庆, 毛根旺2014 63 182901]
[18] Sun A B, Becker M M, Loffhagen D 2016 Comput. Phys. Commun. 206 35
[19] Yamaguchi K, Yamakawa H 2016 J. Astronaut. Sci. 63 1
-
[1] Janhunen P 2004 J. Propul. Power 20 763
[2] Mengali G, Quarta A A, Janhunen P 2008 J. Spacecraft Rockets 45 122
[3] Janhunen P, Toivanen P, Envall J, Merikallio S, Montesanti G, Amo J G, Kvell U, Noorma M, Lätt S 2014 Proc. Est. Acad. Sci. 63 267
[4] Envall J, Janhunen P, Toivanen P, Pajusalu M, Ilbis E, Kalde J, Averin M, Kuuste H, Laizans K, Allik V, Rauhala T, Seppänen H, Kiprich S, Ukkonen J, Hœggström E, Kalvas T, Tarvainen O, Kauppinen J, Nuottajärvi A, Koivisto H 2014 Proc. Est. Acad. Sci. 63 210
[5] Slavinskis A, Pajusalu M, Kuuste H, Ilbis E, Eenmäe T, Snter I, Laizàns K, Ehrpais H, Liias P, Kulu E, Viru J, Kalde J, Kvell U, Ktt J, Zàlite K, Kahn K, Lätt S, Envall J, Toivanen P, Polkko J, Janhunen P, Rosta R, Kalvas T, Vendt R, Allik V, Noorma M 2015 IEEE Aerosp. Electron. Syst. Mag. 30 13
[6] Huo M Y, Peng F J, Zhao J, Xie S B, Qi N M 2015 J. Astronautics 36 1363 (in Chinese)[霍明英, 彭福军, 赵钧, 谢少彪, 齐乃明2015宇航学报36 1363]
[7] Mengali G, Quarta A A 2009 J. Guid. Control. Dyna. 32 1018
[8] Wang Y, Wei Y M, Li Y, Yu Y, Bian B X 2015 Chin. Space Sci. Technol. 32 26 (in Chinese)[王昱, 魏延明, 李永, 于洋, 边炳秀2015中国空间科学技术32 26]
[9] Sanchez-Torres A 2014 Contrib. Plasma Phys. 54 314
[10] Janhunen P, Sandroos A 2007 Ann. Geophys. 25 755
[11] Janhunen P 2011 Acta Astronaut. 68 567
[12] Janhunen P 2012 ASP Conference Series 459 271
[13] Toivanen P K, Janhunen P 2013 J. Propul. Power 29 178
[14] Xiong M, Li X 2012 Solar Phys. 279 231
[15] Bame S J, Mccomas D J, Barraclough B L, Phillips J L, Sofaly K J, Chavez J C, Goldstein B E, Sakurai R K 1992 Astron. Astrophys. Suppl. Ser. 92 237
[16] Turner M M 2006 Phys. Plasmas 13 033506
[17] Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901 (in Chinese)[陈茂林, 夏广庆, 毛根旺2014 63 182901]
[18] Sun A B, Becker M M, Loffhagen D 2016 Comput. Phys. Commun. 206 35
[19] Yamaguchi K, Yamakawa H 2016 J. Astronaut. Sci. 63 1
计量
- 文章访问数: 5909
- PDF下载量: 190
- 被引次数: 0