搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

银纳米颗粒及阵列光传输性质的理论研究

江智宇 王子仪 王金金 张荣君 郑玉祥 陈良尧 王松有

引用本文:
Citation:

银纳米颗粒及阵列光传输性质的理论研究

江智宇, 王子仪, 王金金, 张荣君, 郑玉祥, 陈良尧, 王松有

Theoretical study on the optical response features of silver nanoparticles and arrays

Jiang Zhi-Yu, Wang Zi-Yi, Wang Jin-Jin, Zhang Rong-Jun, Zheng Yu-Xiang, Chen Liang-Yao, Wang Song-You
PDF
导出引用
  • 纳米颗粒及其阵列结构的光学性能与颗粒本身的表面等离子体共振及周期结构参数密切相关.本文根据Mie散射理论和多极子振荡理论,研究了光在银球型纳米颗粒及阵列中的传输性质.对于单个纳米颗粒,当颗粒半径小于50 nm时,消光峰由电偶极子共振产生;当半径大于50 nm时,除电偶极子振荡产生的消光峰外,在短波处将出现由电四极子共振产生的消光峰,且两种极子的共振频率随颗粒半径的增加而减小.由电偶极子共振产生的消光峰位置的理论计算结果与实验结果相符合.对于由球形颗粒组成的无限大二维周期阵列,消光峰主要由单个颗粒产生的消光峰和Wood-Rayleigh反常衍射造成的消光峰组成.通过控制纳米颗粒的尺寸、形状以及阵列的周期、排列方式,可以调节两种极子的共振峰位.本文的结果将对设计具有特定光学性能的纳米结构产生重要的实际意义.
    The optical properties of nanoparticles and their array are closely related to their surface plasmon resonance of the particle and periodic structure parameters. In this paper, optical response features of single Ag nanosphere and periodical two-dimensional structure arrays are theoretically studied. The Mie theories and the multipole resonance theory are employed in the simulation. For Ag spheres each with a radius of less than 40 nm, one extinction peak can be observed and attributed to electric dipole resonance. When the radius of Ag sphere is more than 40 nm, apart from the peak contributed by the electric dipole, there is a peak of extinction at short wavelength, caused by resonance of the electric quadrupole. Generally, the frequency of multipole resonance decreases with increasing particle radius. The simulated results are in accord with the experimental data. For an infinite two-dimensional Ag-nanosphere arrays, two resonance peaks come from the dipole resonance of single particle and the Wood-Rayleigh anomalous diffraction. The frequency of multipole resonance can be controlled by tuning the size and the periodicity distribution of arrays. This paper provides a significant method to design advanced nanostructures with particular optical properties.
      通信作者: 王松有, songyouwang@fudan.edu.cn
    • 基金项目: 复旦大学本科生学术研究资助计划(批准号:15058)和国家自然科学基金(批准号:11374055)资助的课题.
      Corresponding author: Wang Song-You, songyouwang@fudan.edu.cn
    • Funds: Project supported by Fudan's Undergraduate Research Opportunities Program, China (Grant No. 15058) and the National Natural Science Foundation of China (Grant No. 11374055).
    [1]

    Akerman M E, Chan W C W, Laakkonen P, Bhatia S N, Ruoslahti E 2002 Proc. Natl. Acad. Sci. 99 12617

    [2]

    Santra S, Zhang P, Wang K M, Tapec R, Tan W H 2001 Anal. Chem. 73 4988

    [3]

    Meng L J, Zhang K W, Zhong J X 2007 Acta Phys. Sin. 56 1009 (in Chinese)[孟利军, 张凯旺, 钟建新2007 56 1009]

    [4]

    Wang Z Y, Zhang R J, Wang S Y, Lu M, Chen X, Zheng Y X, Chen L Y, Ye Z, Wang C Z, Ho K M 2015 Sci. Rep. 5 7810

    [5]

    Yerci S, Li R, Dal Negro L 2010 Appl. Phys. Lett. 97 081109

    [6]

    McMahon J M, Schatz G C, Gray S K 2013 Phys. Chem. Chem. Phys. 15 5415

    [7]

    Liu Y H, Zi W, Liu S Z, Yan B J 2015 Sol. Energy. Mater. Sol. Cells 140 180

    [8]

    Kim U J, Yoo S, Park Y, Shin M, Kim J, Jeong H, Baik C W, Roh Y G, Lee J, Im K, Son H, Hwang S, Lee C W, Park S 2015 Acs Photonics 2 506

    [9]

    Cottancin E, Celep G, Lerme J, Pellarin M, Huntzinger J R, Vialle J L, Broyer M 2006 Theor. Chem. Acc. 116 514

    [10]

    Huang W Y, Qian W, El-Sayed M A 2005 J. Phys. Chem. B 109 18881

    [11]

    Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig D G 2014 Analyst 139 4855

    [12]

    Chen F Y, Johnston R L 2009 Plasmonics 4 147

    [13]

    Lazzari R, Jupille J, Cavallotti R, Simonsen I 2014 J. Phys. Chem. C 118 7032

    [14]

    Bohren C F, Huffman D R 1983 Absorption and Scattering of Light by Small Particles. (New York:Wiley) pp99-101

    [15]

    Draine B T, Flatau P J 1994 J. Opt. Soc. Am. A 11 1491

    [16]

    Flatau P J, Draine B T 2012 Opt. Express 20 1247

    [17]

    Lerme J, Bonnet C, Broyer M, Cottancin E, Marhaba S, Pellarin M 2008 Phys. Rev. B 77 245406

    [18]

    Li S Q, Qi W H 2014 Acta Phys. Sin. 63 117802 (in Chinese)[李思祺, 齐卫宏2014 63 117802]

    [19]

    Yin C, Xu T, Chen B Y, Han Q B 2015 Acta Phys. Sin. 64 164202 (in Chinese)[殷澄, 许田, 陈秉岩, 韩庆邦2015 64 164202]

    [20]

    Almpanis E, Papanikolaou N 2016 J. Opt. Soc. Am. B-Opt. Phys. 33 99

    [21]

    Evlyukhin A B, Reinhardt C, Seidel A, Luk'yanchuk B S, Chichkov B N 2010 Phys. Rev. B 82 045404

    [22]

    Auguie B, Barnes W L 2008 Phys. Rev. Lett. 101 143902

    [23]

    Agnihotri S, Mukherji S, Mukherji S 2014 Rsc Adv. 4 3974

    [24]

    Fedotov V A, Rogacheva A V, Savinov V, Tsai D P, Zheludev N I 2013 Sci. Rep. 3 2967

    [25]

    Miroshnichenko A E, Evlyukhin A B, Yu Y F, Bakker R M, Chipouline A, Kuznetsov A I, Luk'yanchuk B, Chichkov B N, Kivshar Y S 2015 Nat. Commun. 6 8069

    [26]

    Rayleigh L 1907 Philos. Mag. 14 60

    [27]

    Hessel A, Oliner A A 1965 Appl. Opt. 4 1275

  • [1]

    Akerman M E, Chan W C W, Laakkonen P, Bhatia S N, Ruoslahti E 2002 Proc. Natl. Acad. Sci. 99 12617

    [2]

    Santra S, Zhang P, Wang K M, Tapec R, Tan W H 2001 Anal. Chem. 73 4988

    [3]

    Meng L J, Zhang K W, Zhong J X 2007 Acta Phys. Sin. 56 1009 (in Chinese)[孟利军, 张凯旺, 钟建新2007 56 1009]

    [4]

    Wang Z Y, Zhang R J, Wang S Y, Lu M, Chen X, Zheng Y X, Chen L Y, Ye Z, Wang C Z, Ho K M 2015 Sci. Rep. 5 7810

    [5]

    Yerci S, Li R, Dal Negro L 2010 Appl. Phys. Lett. 97 081109

    [6]

    McMahon J M, Schatz G C, Gray S K 2013 Phys. Chem. Chem. Phys. 15 5415

    [7]

    Liu Y H, Zi W, Liu S Z, Yan B J 2015 Sol. Energy. Mater. Sol. Cells 140 180

    [8]

    Kim U J, Yoo S, Park Y, Shin M, Kim J, Jeong H, Baik C W, Roh Y G, Lee J, Im K, Son H, Hwang S, Lee C W, Park S 2015 Acs Photonics 2 506

    [9]

    Cottancin E, Celep G, Lerme J, Pellarin M, Huntzinger J R, Vialle J L, Broyer M 2006 Theor. Chem. Acc. 116 514

    [10]

    Huang W Y, Qian W, El-Sayed M A 2005 J. Phys. Chem. B 109 18881

    [11]

    Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig D G 2014 Analyst 139 4855

    [12]

    Chen F Y, Johnston R L 2009 Plasmonics 4 147

    [13]

    Lazzari R, Jupille J, Cavallotti R, Simonsen I 2014 J. Phys. Chem. C 118 7032

    [14]

    Bohren C F, Huffman D R 1983 Absorption and Scattering of Light by Small Particles. (New York:Wiley) pp99-101

    [15]

    Draine B T, Flatau P J 1994 J. Opt. Soc. Am. A 11 1491

    [16]

    Flatau P J, Draine B T 2012 Opt. Express 20 1247

    [17]

    Lerme J, Bonnet C, Broyer M, Cottancin E, Marhaba S, Pellarin M 2008 Phys. Rev. B 77 245406

    [18]

    Li S Q, Qi W H 2014 Acta Phys. Sin. 63 117802 (in Chinese)[李思祺, 齐卫宏2014 63 117802]

    [19]

    Yin C, Xu T, Chen B Y, Han Q B 2015 Acta Phys. Sin. 64 164202 (in Chinese)[殷澄, 许田, 陈秉岩, 韩庆邦2015 64 164202]

    [20]

    Almpanis E, Papanikolaou N 2016 J. Opt. Soc. Am. B-Opt. Phys. 33 99

    [21]

    Evlyukhin A B, Reinhardt C, Seidel A, Luk'yanchuk B S, Chichkov B N 2010 Phys. Rev. B 82 045404

    [22]

    Auguie B, Barnes W L 2008 Phys. Rev. Lett. 101 143902

    [23]

    Agnihotri S, Mukherji S, Mukherji S 2014 Rsc Adv. 4 3974

    [24]

    Fedotov V A, Rogacheva A V, Savinov V, Tsai D P, Zheludev N I 2013 Sci. Rep. 3 2967

    [25]

    Miroshnichenko A E, Evlyukhin A B, Yu Y F, Bakker R M, Chipouline A, Kuznetsov A I, Luk'yanchuk B, Chichkov B N, Kivshar Y S 2015 Nat. Commun. 6 8069

    [26]

    Rayleigh L 1907 Philos. Mag. 14 60

    [27]

    Hessel A, Oliner A A 1965 Appl. Opt. 4 1275

  • [1] 叶高杰, 殷澄, 黎思瑜, 俞强, 王贤平, 吴坚. 金属纳米颗粒双圆环阵列的表面格点共振效应.  , 2023, 72(10): 104201. doi: 10.7498/aps.72.20230199
    [2] 张雨佳, 卢敏健, 李岩, 尉昊赟. 配体修饰的金纳米颗粒的二次谐波散射多极子分析.  , 2022, 71(17): 170301. doi: 10.7498/aps.71.20220669
    [3] 熊磊. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体共振.  , 2021, (): . doi: 10.7498/aps.70.20211629
    [4] 殷澄, 陆成杰, 笪婧, 张瑞耕, 阚雪芬, 韩庆邦, 许田. 金属纳米颗粒二聚体阵列的消光截面.  , 2021, 70(2): 024201. doi: 10.7498/aps.70.20200964
    [5] 梁玲玲, 赵艳, 冯超. 铝基银纳米阵列制备及其紫外-可见-近红外光吸收特性.  , 2020, 69(6): 065201. doi: 10.7498/aps.69.20191522
    [6] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性.  , 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [7] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究.  , 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [8] 苏丹, 窦秀明, 丁琨, 王海艳, 倪海桥, 牛智川, 孙宝权. 金纳米颗粒光散射提高InAs单量子点荧光提取效率.  , 2015, 64(23): 235201. doi: 10.7498/aps.64.235201
    [9] 黄运欢, 李璞. 金纳米棒复合体的消光特性.  , 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [10] 张文平, 马忠元, 徐骏, 徐岭, 李伟, 陈坤基, 黄信凡, 冯端. 纳米银六角阵列在掺氧氮化硅中的局域表面等离激元共振特性仿真.  , 2015, 64(17): 177301. doi: 10.7498/aps.64.177301
    [11] 严达利, 李申予, 刘士余, 竺云. 银纳米颗粒/多孔硅复合材料的制备与气敏性能研究.  , 2015, 64(13): 137102. doi: 10.7498/aps.64.137102
    [12] 严达利, 李申予, 刘士余, 竺云. 银纳米颗粒/多孔硅复合材料的制备与气敏性能研究.  , 2015, 64(13): 137104. doi: 10.7498/aps.64.137104
    [13] 张铮, 徐智谋, 孙堂友, 何健, 徐海峰, 张学明, 刘世元. 硅表面抗反射纳米周期阵列结构的纳米压印制备与性能研究.  , 2013, 62(16): 168102. doi: 10.7498/aps.62.168102
    [14] 杨振岭, 刘玉强, 杨延强. 银纳米颗粒对四苯基卟啉Q带荧光寿命的延长.  , 2012, 61(3): 037805. doi: 10.7498/aps.61.037805
    [15] 王凯, 龙华, 付明, 张莉超, 杨光, 陆培祥. Au纳米颗粒阵列中双光子吸收的饱和过程.  , 2011, 60(3): 034209. doi: 10.7498/aps.60.034209
    [16] 韩涛, 孟凡英, 张松, 汪建强, 程雪梅. 银纳米颗粒减反射特性的理论研究.  , 2011, 60(2): 027303. doi: 10.7498/aps.60.027303
    [17] 姚 尧, 方忠慧, 周 江, 李 伟, 马忠元, 徐 骏, 黄信凡, 陈坤基, 宫本恭幸, 小田俊理. 激光干涉结晶法制备一维周期结构的纳米硅阵列.  , 2008, 57(8): 4960-4965. doi: 10.7498/aps.57.4960
    [18] 吴青松, 赵 岩, 张彩碚, 李 峰. 片状三角形银纳米颗粒的自组织行为与光学特性.  , 2005, 54(3): 1452-1456. doi: 10.7498/aps.54.1452
    [19] 谢 耩, 温建忠, 汪国平, 王建波. 聚合物表面银纳米颗粒的大面积均匀沉积及其应用.  , 2005, 54(1): 242-245. doi: 10.7498/aps.54.242
    [20] 何声太, 姚建年, 汪裕萍, 江鹏, 时东霞, 解思深, 庞世瑾, 高鸿钧. 银纳米粒子自组织二维有序阵列.  , 2001, 50(4): 765-768. doi: 10.7498/aps.50.765
计量
  • 文章访问数:  7978
  • PDF下载量:  397
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-04
  • 修回日期:  2016-07-26
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map