搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Eu原子4f76p1/2ns自电离过程的动力学特性

李琼 沈礼 闫俊刚 戴长建 杨玉娜

引用本文:
Citation:

Eu原子4f76p1/2ns自电离过程的动力学特性

李琼, 沈礼, 闫俊刚, 戴长建, 杨玉娜

Dynamic properties of Eu 4f76p1/2ns autoionization process

Li Qiong, Shen Li, Yan Jun-Gang, Dai Chang-Jian, Yang Yu-Na
PDF
导出引用
  • 采用孤立实激发与速度影像技术相结合的方法,研究了Eu原子4f76p1/2ns(n=7,9)自电离过程的动力学特性,包括弹射电子的角分布和向各离子态衰变的分支比. 首先,采用孤立实激发技术将Eu原子分步从基态4f76s2经中间态4f76s6p激发至4f76sns Rydberg态,并通过第三步跃迁4f76s+4f76p1/2+将其激发至4f76p1/2ns自电离态. 其次,运用速度影像技术对上述自电离过程进行探测,并通过一系列数学变换计算出该过程的弹射电子的能量分布和角向分布. 本文不仅分析和比较了各个态自电离衰变的分支比和各向异性参数随光子能量的变化规律,还深入讨论了它们与自电离光谱之间的对应关系. 最后,依据自电离衰变的分支比,探讨了实现Eu 离子粒子数反转的可能性,为实现自电离激光器提供了有价值的信息.
    To explore the dynamic properties of Eu 4f76p1/2ns autoionization process, the autoionization branching ratios of ions and the angular distributions of ejected electrons from the Eu 4f76p1/2ns (n=7, 9) autoionizing states are systematically investigated with the combination of the three-step isolated-core excitation (ICE) and the velocity-map imaging techniques The Eu 4f76sns Rydberg states are populated via a two-step laser excitation, from which the Eu 4f76p1/2ns autoionizing states are excited by the wavelength of the third laser around the Eu 6s+6p1/2+ ionic resonance in order to obtain autoionization spectra and the velocity-map images of ejected electrons from the Eu 4f76p1/2ns autoionizing states. Once the velocity-map images have been measured, both the energy distribution and angular distribution of ejected electrons can be acquired. Moreover, the spectra of the branching ratios and the anisotropic parameters within the autoionization resonances are also measured to observe their energy dependence and the relation with the autoionization spectra. Comparisons of the observed spectra of 4f76p1/2ns autoionizing states with n = 7, 8, and 9 manifest that the ICE technique is more suitable for the higher-n members of autoionization series. It is found that the Eu atoms in the 4f76p1/2ns (n = 8, 9) autoionizing states mainly decay into 4f75d+(9D) ionic state, leading to the population inversion between 4f75d+(9D) and 4f76s+ (7S) or 4f76s+ (9S) ionic states, which is significant for developing the autoionization laser. The angular distributions of the ejected electrons from the Eu 4f76p1/2ns autoionizing states show simple patterns at the energy points corresponding to the peaks of autoionization spectra, and have complicated patterns in the energy regions off the peaks of autoionization spectra, especially in the regions corresponding to the sharp increase or decrease in the autoionization spectra. The above phenomena can be explained with the strength of configuration interaction among different autoionization series converging to different ionic states, which is fluctuated within the energy region of autoionization spectra. In addition, within the autoionization resonance both the spectra of branching ratios and anisotropic parameters vary irregularly, and no obvious correlation with the spectra of 4f76p1/2ns autoionizing states can be found.
      通信作者: 戴长建, daicj@126.com
    • 基金项目: 国家自然科学基金(批准号:11174218)资助的课题.
      Corresponding author: Dai Chang-Jian, daicj@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174218).
    [1]

    Jones R R, Dai C J, Gallagher T F 1990 Phys. Rev. A 41 316

    [2]

    Lindsay M D, Dai C J, Lyons B J, Mahon C R, Gallagher T F 1994 Phys. Rev. A 50 5058

    [3]

    Dai C J 1995 Phys. Rev. A 52 4416

    [4]

    Lindsay M D, Dai C J 1992 Phys. Rev. A 46 3789

    [5]

    L J, Dai C J, Xu Y F, Li S B 2001 Chin. Phys. Lett. 18 516

    [6]

    Zhang Y, Dai C J 2003 J. Electron Spectrosc. 128 135

    [7]

    Nakhate S G, Razvi M A N, Connerade J P, Ahmad S A 1996 J. Phys. B: At. Mol. Opt. Phys. 29 1439

    [8]

    Bhattacharyya S, D'souza R, Rao P M, Razvi M A N 2003 Spectrochim Acta Part B 58 469

    [9]

    Bhattacharyya S, Razvi M A N, Cohen S, Nakhate S G 2007 Phys. Rev. A 76 012502

    [10]

    Xiao Y, Dai C J, Qin W J 2010 Chin. Phys. B 19 063202

    [11]

    Wang X, Shen L, Dai C J {2012 J. Phys. B: At. Mol. Opt. Phys. 45 5001

    [12]

    Kachru R, Tran N H, Pillet P, Gallagher T F 1985 Phys. Rev. A 31 218

    [13]

    Stodolna A S, Rouzee A, Lepine F, Cohen S, Robicheaux F, Gijsbertsen A, Jungmann J H, Bordas C, Vrakking M J J 2013 Phys. Rev. Lett. 110 3001

    [14]

    Goto M, Hansen K 2012 Phys. Scr. 86 035303

    [15]

    Liang H R, Shen L, Jing H, Dai C J 2014 Acta Phys. Sin. 63 133202 (in Chinese) [梁洪瑞, 沈礼, 荆华, 戴长建 2014 63 133202]

    [16]

    Dong C, Shen L, Yang J H, Dai C J {2014 Acta Opt. Sin. 34 0702001 (in Chinese) [董程, 沈礼, 杨金红, 戴长建 2014 光学学报 34 0702001]

    [17]

    Dai C J, Schinn G W, Gallagher T F 1990 Phys. Rev. A 42 223

    [18]

    Martin W C, Zalubas Romuald, Hagan Lucy 1978 Atomic Energy Levels (Washington: U.S. Government Printing Office) pp185-198

    [19]

    Miranda E R, Valdos L R B, Ramirez E G, Lumbreras D A, Anaya T S, Vargas J J R, Hernandez J J V, Argelles V T, Castano V M 2013 J. Eur. Opt. Soc.-Rapid 8 13036

    [20]

    Bokor J, Freeman R R, Cooke W E 1982 Phys. Rev. Lett. 48 1242

    [21]

    Freeman R R, Bokor J, Cooke W E 1982 Phys. Rev. A 26 3029

    [22]

    Lindsay M D, Cai L T, Schinn G W, Dai C J, Gallagher T F 1992 Phys. Rev. A 45 231

    [23]

    Tauro S, Liu K 2008 J Phys B: At. Mol. Opt. Phys. 41 225001

  • [1]

    Jones R R, Dai C J, Gallagher T F 1990 Phys. Rev. A 41 316

    [2]

    Lindsay M D, Dai C J, Lyons B J, Mahon C R, Gallagher T F 1994 Phys. Rev. A 50 5058

    [3]

    Dai C J 1995 Phys. Rev. A 52 4416

    [4]

    Lindsay M D, Dai C J 1992 Phys. Rev. A 46 3789

    [5]

    L J, Dai C J, Xu Y F, Li S B 2001 Chin. Phys. Lett. 18 516

    [6]

    Zhang Y, Dai C J 2003 J. Electron Spectrosc. 128 135

    [7]

    Nakhate S G, Razvi M A N, Connerade J P, Ahmad S A 1996 J. Phys. B: At. Mol. Opt. Phys. 29 1439

    [8]

    Bhattacharyya S, D'souza R, Rao P M, Razvi M A N 2003 Spectrochim Acta Part B 58 469

    [9]

    Bhattacharyya S, Razvi M A N, Cohen S, Nakhate S G 2007 Phys. Rev. A 76 012502

    [10]

    Xiao Y, Dai C J, Qin W J 2010 Chin. Phys. B 19 063202

    [11]

    Wang X, Shen L, Dai C J {2012 J. Phys. B: At. Mol. Opt. Phys. 45 5001

    [12]

    Kachru R, Tran N H, Pillet P, Gallagher T F 1985 Phys. Rev. A 31 218

    [13]

    Stodolna A S, Rouzee A, Lepine F, Cohen S, Robicheaux F, Gijsbertsen A, Jungmann J H, Bordas C, Vrakking M J J 2013 Phys. Rev. Lett. 110 3001

    [14]

    Goto M, Hansen K 2012 Phys. Scr. 86 035303

    [15]

    Liang H R, Shen L, Jing H, Dai C J 2014 Acta Phys. Sin. 63 133202 (in Chinese) [梁洪瑞, 沈礼, 荆华, 戴长建 2014 63 133202]

    [16]

    Dong C, Shen L, Yang J H, Dai C J {2014 Acta Opt. Sin. 34 0702001 (in Chinese) [董程, 沈礼, 杨金红, 戴长建 2014 光学学报 34 0702001]

    [17]

    Dai C J, Schinn G W, Gallagher T F 1990 Phys. Rev. A 42 223

    [18]

    Martin W C, Zalubas Romuald, Hagan Lucy 1978 Atomic Energy Levels (Washington: U.S. Government Printing Office) pp185-198

    [19]

    Miranda E R, Valdos L R B, Ramirez E G, Lumbreras D A, Anaya T S, Vargas J J R, Hernandez J J V, Argelles V T, Castano V M 2013 J. Eur. Opt. Soc.-Rapid 8 13036

    [20]

    Bokor J, Freeman R R, Cooke W E 1982 Phys. Rev. Lett. 48 1242

    [21]

    Freeman R R, Bokor J, Cooke W E 1982 Phys. Rev. A 26 3029

    [22]

    Lindsay M D, Cai L T, Schinn G W, Dai C J, Gallagher T F 1992 Phys. Rev. A 45 231

    [23]

    Tauro S, Liu K 2008 J Phys B: At. Mol. Opt. Phys. 41 225001

  • [1] 邢晔, 李娜, 杨翎彬, 胡晓会. 基于分子态构型研究单粲味五夸克态的产生.  , 2024, 73(13): 131401. doi: 10.7498/aps.73.20240447
    [2] 柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷. 光电离过程中Fe靶和V靶特征辐射的角相关研究.  , 2020, 69(4): 043201. doi: 10.7498/aps.69.20191524
    [3] 柳钰, 徐忠锋, 王兴, 胡鹏飞, 张小安. 光子碰撞Au靶产生L系特征X射线角分布.  , 2020, 69(12): 123201. doi: 10.7498/aps.69.20191977
    [4] 赵磊, 徐妙华, 张翌航, 张喆, 朱保君, 姜炜曼, 张笑鹏, 赵旭, 仝博伟, 贺书凯, 卢峰, 吴玉迟, 周维民, 张发强, 周凯南, 谢娜, 黄征, 仲佳勇, 谷渝秋, 李玉同, 李英骏. 利用气泡探测器测量激光快中子.  , 2018, 67(22): 222101. doi: 10.7498/aps.67.20181035
    [5] 秦朝朝, 黄燕, 彭玉峰. Br2分子在360610 nm的光解离动力学研究.  , 2017, 66(19): 193301. doi: 10.7498/aps.66.193301
    [6] 陈传文, 项阳. 正交各向异性双层交换弹簧薄膜的磁矩分布.  , 2016, 65(12): 127502. doi: 10.7498/aps.65.127502
    [7] 马堃, 颉录有, 张登红, 董晨钟, 屈一至. 氖原子光电子角分布的理论计算.  , 2016, 65(8): 083201. doi: 10.7498/aps.65.083201
    [8] 梁洪瑞, 沈礼, 荆华, 戴长建. 用速度影像技术研究Eu原子6p1/28s的自电离衰变的分支比.  , 2014, 63(13): 133202. doi: 10.7498/aps.63.133202
    [9] 沈礼, 野仕伟, 戴长建. 电场中Eu原子电离阈移动的实验研究.  , 2012, 61(6): 063301. doi: 10.7498/aps.61.063301
    [10] 刘晓静, 张佰军, 华中, 肖利, 刘兵, 吴义恒, 王清才, 王岩, 张丙新. 关于B0→π-l+ν l衰变过程分支比的计算.  , 2011, 60(4): 041301. doi: 10.7498/aps.60.041301
    [11] 魏熙晔, 李泉凤, 严慧勇. 高能电子束韧致辐射特性的理论研究.  , 2009, 58(4): 2313-2319. doi: 10.7498/aps.58.2313
    [12] 葛愉成. 激光-电子康普顿散射物理特性研究.  , 2009, 58(5): 3094-3103. doi: 10.7498/aps.58.3094
    [13] 韩丽丽, 戴振文, 王云鹏, 蒋占魁. 钯原子谱线的分支比测量.  , 2008, 57(6): 3425-3428. doi: 10.7498/aps.57.3425
    [14] 吴向尧, 公丕锋, 苏希玉, 刘晓静, 范希会, 王 丽, 石宗华, 郭义庆. D→Klv~l衰变过程的研究.  , 2006, 55(7): 3375-3379. doi: 10.7498/aps.55.3375
    [15] 郑志远, 李玉同, 远晓辉, 徐妙华, 梁文锡, 于全芝, 张 翼, 王兆华, 魏志义, 张 杰. 超热电子角分布和能谱的实验研究.  , 2006, 55(10): 5349-5353. doi: 10.7498/aps.55.5349
    [16] 吴向尧, 尹新国, 郭义庆, 张晓波, 尹建华, 谢远亮. 关于B0→K0π0衰变过程研究.  , 2004, 53(4): 1015-1019. doi: 10.7498/aps.53.1015
    [17] 张穗萌, 吴兴举. H原子(e,2e)反应中电子角分布的理论研究.  , 2001, 50(11): 2137-2143. doi: 10.7498/aps.50.2137
    [18] 陈宝振. 氢原子阈上电离角分布.  , 1990, 39(1): 40-45. doi: 10.7498/aps.39.40
    [19] 陆杰, 胡素芬, 封荣, 冷光垚, 孙家祯, 徐云飞. Sr原子5p1/2ns系列自电离谱的观察和测定.  , 1985, 34(12): 1567-1572. doi: 10.7498/aps.34.1567
    [20] 陈激. 关于Y1*对产生的分支比.  , 1965, 21(11): 1919-1920. doi: 10.7498/aps.21.1919
计量
  • 文章访问数:  6458
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-22
  • 修回日期:  2016-05-18
  • 刊出日期:  2016-08-05

/

返回文章
返回
Baidu
map