搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用速度影像技术研究Eu原子6p1/28s的自电离衰变的分支比

梁洪瑞 沈礼 荆华 戴长建

引用本文:
Citation:

用速度影像技术研究Eu原子6p1/28s的自电离衰变的分支比

梁洪瑞, 沈礼, 荆华, 戴长建

The VMI study on branching ratio decay from Eu 6p1/28s autoionizing state

Liang Hong-Rui, Shen Li, Jing Hua, Dai Chang-Jian
PDF
导出引用
  • 本文采用速度影像技术对Eu原子的自电离弹射电子的动力学过程进行了系统研究. 实验采用三步孤立实激发方法分步从基态4f76s6s8S7/2经中间态4f76s6p6 P5/2 激发到4f76s8s8 P7/2 Rydberg态上,然后将其进一步共振激发至4f76p1/2(J=3)8 s和4f76p1/2(J=4)8 s自电离态. 根据所用的激发路径及其选择定则可以得出自电离态的总角动量的可能取值;通过自电离过程能量守恒和角动量守恒原理推测自电离衰变对应的离子终态信息. 利用电子透镜对上述自电离过程中产生的弹射电子进行聚焦和成像,通过位置敏感探测器对其动能进行分辨,运用速度影像技术进行数学变换和计算得到弹射电子的能量分布,分析并给出Eu原子自电离衰变分支比. 同时通过调谐第三步激光的波长,得出了分支比随光子能量的变化规律,探讨了实现Eu离子粒子数反转的可能性.
    A velocity-map-imaging (VMI) method is employed to investigate systematically the dynamical process of ejected electrons from autoionizing states of the Eu atom for the first time as far as we know. An atom is excited stepwise from the 4f76s6s8 S7/2 ground state to the 4f76s8s8 P7/2 Rydberg state via the 4f76s6p6 P5/2 intermediate state, then further excited to the 4f76p1/2(J=3)8s and 4f76p1/2(J=4)8s autoionizing states using the three-step isolated-core excitation method. According to the excitation pathways and selection rules, the value of total angular momentum of the autoionizing state can be calculated. The energy conservation and angular momentum parity conservation would enable us to determine the final states during the autoionizing process. The ejected electron, which decays from the autoionizing process, can be focused and imaged by the electron lens and the kinetic energy of it is resolved by the position sensitive detector. By combining velocity-map-imaging method with the mathematical transformation, the ejected electron energy distribution can be obtained, also the branching ratio is confirmed. Simultaneously, by tuning the wavelength of the third laser, the characteristic of the branching ratio following the variation of the photon energy, and the possibility of the population inversion have been discussed.
    • 基金项目: 国家自然科学基金(批准号:11174218)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174218).
    [1]

    Jones R R, Dai C J, Gallagher T F 1990 Phys. Rev. A 41 316

    [2]

    Lindsay M D, Dai C J, Lyons B J, Mahon C R, Gallagher T F 1994 Phys. Rev. A 50 5058

    [3]

    Dai C J 1995 Phys. Rev. A 52 4416

    [4]

    Lindsay M D, Dai C J 1992 Phys. Rev. A 46 3789

    [5]

    L J, Li C Q, Dai C J 2000 Chin. Phys. 9 500

    [6]

    Zhang Y, Dai C J 2003 Journal of Electron Spectroscopy 128 135

    [7]

    Li L Q, Zhou H J, Xu X Y, Huang W, Chen D Y 1992 Chin. Phys. 1 19

    [8]

    Zhou H J, Huang W, Xu X Y, Chen D Y 1993 Chin. Phys. 2 917

    [9]

    Biemont E, Quinet P, Dai Z W, Jiang Z K, Zhang Z G, Xu H L, Svanberg S 2002 J. Phys. B:At Mol. Opt. Phys. 35 4743

    [10]

    Bushaw B A, Nortershauser W, Blaum K, Wendtd K 2003 Spectrochim Acta Part B 58 1083

    [11]

    Bhattacharyya S, Souza R D, Rao P M, Razvi M A N 2003 Spectrochim Acta Part B 58 469

    [12]

    Bhattacharyya S, Nakhate S G, Jayasekharan T, Razvi M A N 2006 Phys. Rev. A 73 2506

    [13]

    Shen L, Ye S W, D C J 2012 Acta Phys. Sin. 61 063301 (in Chinese) [沈礼, 野仕伟, 戴长建 2012 61 063301]

    [14]

    Xiao Y, Dai C J, Zhao H Y, Qin W J 2009 Acta Phys. Sin. 58 3071 (in Chinese)[肖颖, 戴长建, 赵洪英, 秦文杰 2009 58 3071]

    [15]

    Yang J H, Wang X, Shen L, Dai C J 2013 Acta Optica Sinica 33 278 (in Chinese)[杨金红, 王曦, 沈礼, 戴长建 2013 光学学报 33 278]

    [16]

    Wang X, Shen L, Dai C J 2012 J. Phys. B: At Mol. Opt. Phys. 45 5001

    [17]

    Kachru R, Tran N H, Pillet P, Gallagher T F 1985 Phys. Rev. A 31 218

    [18]

    Holland D M P, Shaw D A 2011 Journal of Electron Spectroscopy and Related Phenomena 184 144

    [19]

    Lucchini M, Kim K, Calegari F, Kelkensberg F, Siu W, Sansone G, Vrakking M J J, Hochlaf M, Nisoli M 2012 Phys. Rev. A 86 3404

    [20]

    Keeffe P O, Bolognesi P, Richter R, Moise A, Ovcharenko Y, King G C, Avaldi L 2011 Phys. Rev. A 84 2020

    [21]

    Stodolna A S, Rouzee A, Lepine F, Cohen S, Robicheaux F, Gijsbertsen A, Jungmann J H, Bordas C, Vrakking M J J 2013 Phys. Rev. Lett. 110 3001

    [22]

    Dahl J E, Delmore A D 1990 Rev. Sci. Instrum. 61 607

    [23]

    Xie J, Dai C J, Li M 2011 J. Phys. B:At. Mol. Opt. Phys. 44 5002

    [24]

    Miranda D R E, Valdos B L R, Ramirez E G, Lumbreras A D, Anaya S T, Vargas D R J I, Hernandez V J J, Torres A V, Castano V M 2013 J. Europ. Opt. Soc. Rap. 8 13036

    [25]

    Dribinski V, Ossadtchi A, Mandelshtam V A, Reisler H 2002 Rev. Sci. Instrum. 73 2634

  • [1]

    Jones R R, Dai C J, Gallagher T F 1990 Phys. Rev. A 41 316

    [2]

    Lindsay M D, Dai C J, Lyons B J, Mahon C R, Gallagher T F 1994 Phys. Rev. A 50 5058

    [3]

    Dai C J 1995 Phys. Rev. A 52 4416

    [4]

    Lindsay M D, Dai C J 1992 Phys. Rev. A 46 3789

    [5]

    L J, Li C Q, Dai C J 2000 Chin. Phys. 9 500

    [6]

    Zhang Y, Dai C J 2003 Journal of Electron Spectroscopy 128 135

    [7]

    Li L Q, Zhou H J, Xu X Y, Huang W, Chen D Y 1992 Chin. Phys. 1 19

    [8]

    Zhou H J, Huang W, Xu X Y, Chen D Y 1993 Chin. Phys. 2 917

    [9]

    Biemont E, Quinet P, Dai Z W, Jiang Z K, Zhang Z G, Xu H L, Svanberg S 2002 J. Phys. B:At Mol. Opt. Phys. 35 4743

    [10]

    Bushaw B A, Nortershauser W, Blaum K, Wendtd K 2003 Spectrochim Acta Part B 58 1083

    [11]

    Bhattacharyya S, Souza R D, Rao P M, Razvi M A N 2003 Spectrochim Acta Part B 58 469

    [12]

    Bhattacharyya S, Nakhate S G, Jayasekharan T, Razvi M A N 2006 Phys. Rev. A 73 2506

    [13]

    Shen L, Ye S W, D C J 2012 Acta Phys. Sin. 61 063301 (in Chinese) [沈礼, 野仕伟, 戴长建 2012 61 063301]

    [14]

    Xiao Y, Dai C J, Zhao H Y, Qin W J 2009 Acta Phys. Sin. 58 3071 (in Chinese)[肖颖, 戴长建, 赵洪英, 秦文杰 2009 58 3071]

    [15]

    Yang J H, Wang X, Shen L, Dai C J 2013 Acta Optica Sinica 33 278 (in Chinese)[杨金红, 王曦, 沈礼, 戴长建 2013 光学学报 33 278]

    [16]

    Wang X, Shen L, Dai C J 2012 J. Phys. B: At Mol. Opt. Phys. 45 5001

    [17]

    Kachru R, Tran N H, Pillet P, Gallagher T F 1985 Phys. Rev. A 31 218

    [18]

    Holland D M P, Shaw D A 2011 Journal of Electron Spectroscopy and Related Phenomena 184 144

    [19]

    Lucchini M, Kim K, Calegari F, Kelkensberg F, Siu W, Sansone G, Vrakking M J J, Hochlaf M, Nisoli M 2012 Phys. Rev. A 86 3404

    [20]

    Keeffe P O, Bolognesi P, Richter R, Moise A, Ovcharenko Y, King G C, Avaldi L 2011 Phys. Rev. A 84 2020

    [21]

    Stodolna A S, Rouzee A, Lepine F, Cohen S, Robicheaux F, Gijsbertsen A, Jungmann J H, Bordas C, Vrakking M J J 2013 Phys. Rev. Lett. 110 3001

    [22]

    Dahl J E, Delmore A D 1990 Rev. Sci. Instrum. 61 607

    [23]

    Xie J, Dai C J, Li M 2011 J. Phys. B:At. Mol. Opt. Phys. 44 5002

    [24]

    Miranda D R E, Valdos B L R, Ramirez E G, Lumbreras A D, Anaya S T, Vargas D R J I, Hernandez V J J, Torres A V, Castano V M 2013 J. Europ. Opt. Soc. Rap. 8 13036

    [25]

    Dribinski V, Ossadtchi A, Mandelshtam V A, Reisler H 2002 Rev. Sci. Instrum. 73 2634

  • [1] 张钧尧, 熊静逸, 魏少强, 李云飞, 卢肖勇. 镥原子自电离态的共振电离谱.  , 2023, 72(19): 193203. doi: 10.7498/aps.72.20230978
    [2] 常鑫鑫, 沈礼, 武晓瑞, 戴长建. Eu原子4f76snlRydberg态的研究.  , 2017, 66(9): 093201. doi: 10.7498/aps.66.093201
    [3] 李琼, 沈礼, 闫俊刚, 戴长建, 杨玉娜. Eu原子4f76p1/2ns自电离过程的动力学特性.  , 2016, 65(15): 153202. doi: 10.7498/aps.65.153202
    [4] 刘玉柱, Gerber Thomas, Knopp Gregor. 利用强场多光子电离技术实现对多原子分子离子振动量子态的光学操控.  , 2014, 63(24): 244208. doi: 10.7498/aps.63.244208
    [5] 杨騄, 戴长建, 赵艳红. 用光电离技术探测钐原子的奇宇称束缚激发态的光谱.  , 2013, 62(5): 053201. doi: 10.7498/aps.62.053201
    [6] 胡亚华, 叶丹丹, 祁月盈, 刘晓菊, 刘玲. 质子与Be原子的碰撞电离过程研究.  , 2012, 61(24): 243401. doi: 10.7498/aps.61.243401
    [7] 沈礼, 野仕伟, 戴长建. 电场中Eu原子电离阈移动的实验研究.  , 2012, 61(6): 063301. doi: 10.7498/aps.61.063301
    [8] 秦文杰, 戴长建, 赵洪英, 肖颖. 利用自电离探测技术研究Sm原子Rydberg态光谱.  , 2009, 58(1): 209-214. doi: 10.7498/aps.58.209
    [9] 刘玉文, 陈熙萌, 邵剑雄, 丁宝卫, 付宏斌, 崔 莹, 张红强, 鲁彦霞, 高志民, 杜 娟, 陈 林, 孙光智, 尹永智, 于得洋, 蔡晓红. 低电荷态离子原子碰撞过程中的转移电离机理的研究.  , 2008, 57(5): 2913-2918. doi: 10.7498/aps.57.2913
    [10] 刘春雷, 何 斌, 宁 烨, 颜 君, 王建国. Si2+离子与氢原子碰撞电离过程的CTMC计算.  , 2005, 54(7): 3206-3212. doi: 10.7498/aps.54.3206
    [11] 宁 烨, 何 斌, 刘春雷, 颜 君, 王建国. He2+离子与H原子的重粒子碰撞电离过程.  , 2005, 54(7): 3075-3081. doi: 10.7498/aps.54.3075
    [12] 胡畏, 方渡飞, 王炎森, 陆福全, 汤家镛, 杨福家. 包含激发-自电离的类锂离子的电子碰撞电离截面.  , 1993, 42(9): 1416-1421. doi: 10.7498/aps.42.1416
    [13] 潘广炎, 杨锋, 李大万, 刘占稳, 张文, 徐谦, 刘惠萍, 赵孟春. 高电荷态离子N6+与He原子碰撞激发过程的实验研究.  , 1992, 41(2): 228-232. doi: 10.7498/aps.41.228
    [14] 刘磊, 李家明. 原子体系近核区电子波函数振幅(Ⅰ)——离化态原子高能光电离过程.  , 1991, 40(12): 1922-1928. doi: 10.7498/aps.40.1922
    [15] 于德洪, 潘广炎, 雷子明, 杨锋, 刘家瑞, 孙湘. Ne+离子与Li原子碰撞过程中激发态的研究.  , 1990, 39(8): 47-51. doi: 10.7498/aps.39.47-2
    [16] 张森, 邱济真, 梅式民, 陈星. Ca和Sr原子n′dnl自电离态在低电场中的线性Stark效应.  , 1990, 39(8): 32-37. doi: 10.7498/aps.39.32
    [17] 张连芳, 赵文正, 尚仁成, 潘力, 王世亮, 文克玲, 陈瓞延. 用脉冲电场光电流光谱研究Ne原子的自电离态.  , 1990, 39(12): 1870-1876. doi: 10.7498/aps.39.1870
    [18] 胡素芬, 张森, 陈星. Eu原子4f76s(7S)np系列自电离谱的观察和测定.  , 1990, 39(9): 1370-1378. doi: 10.7498/aps.39.1370
    [19] 雷子明, 刘家瑞, 潘广炎. He+离子和Ne原子碰撞过程中激发态的研究.  , 1987, 36(4): 533-539. doi: 10.7498/aps.36.533
    [20] 潘广炎, 雷子明, 刘家瑞. He+离子和Ar原子碰撞过程中激发态的研究.  , 1987, 36(3): 301-307. doi: 10.7498/aps.36.301
计量
  • 文章访问数:  5780
  • PDF下载量:  405
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-28
  • 修回日期:  2014-03-17
  • 刊出日期:  2014-07-05

/

返回文章
返回
Baidu
map