搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层高效透射型相位梯度超表面的设计及实验验证

庄亚强 王光明 张晨新 张小宽 宗彬锋 马卫东 王亚伟

引用本文:
Citation:

单层高效透射型相位梯度超表面的设计及实验验证

庄亚强, 王光明, 张晨新, 张小宽, 宗彬锋, 马卫东, 王亚伟

Design and experimental verification of single-layer high-efficiency transmissive phase-gradient metasurface

Zhuang Ya-Qiang, Wang Guang-Ming, Zhang Chen-Xin, Zhang Xiao-Kuan, Zong Bin-Feng, Ma Wei-Dong, Wang Ya-Wei
PDF
导出引用
  • 本文设计了一种单层高效透射型相位梯度超表面,并通过仿真和实验进行了验证. 在圆极化波入射条件下,超表面单元的交叉极化转化率大于90%的频带范围为14-15.8 GHz. 通过对单元的面内旋转可实现在保持高交叉极化透射幅度的前提下对交叉极化透射相位进行调控. 基于6个旋转步进为30的超表面单元周期排布设计了一维相位梯度超表面,该超表面对左/右旋圆极化波分别形成方向相反的相位梯度,因此线极化波经过超表面后将会分离成两束对称传播的圆极化波. 15 GHz处的近场电场分布和远场归一化透射能量方向图的仿真结果表明,奇异透射角仿真值为33.5,与理论设计值(33.75)符合得很好. 仿真并测试了透射功率密度谱,结果表明在14.9-15.3 GHz频带范围内垂直入射的线极化波被高效分离成两束圆极化波. 相比于以往的透射型极化调制超表面,该超表面具有工作效率高、厚度薄、重量轻等优点,在电磁波传播和极化操控领域具有重要的应用价值.
    Polarization characteristic is an important feature of electromagnetic (EM) wave. Manipulating polarization state and controlling propagation direction of EM wave by phase-gradient metasurface (PGM) have become a research hotspot in recent years. However, using transmissive PGM for polarization manipulation often suffers a low efficiency. To alleviate this problem, multilayered structure was utilized. However, it often suffered bulky volume and design complexity. Therefore, engineering a thin high-efficiency transmissive PGM with polarization manipulation is a pressing and challenging issue. In this paper, a single-layer high-efficiency transmissive PGM with cross-polarization conversion and anomalous refraction is designed. To illustrate the working mechanism, the PGM is comprehensively investigated through theoretical analysis, EM simulations and experimental measurements. The unit cell evolving from an electric-field-coupled resonator is carefully designed to exhibit a Pancharatnam-Berry phase gradient. Each rotated element irradiated separately by the normally-incident left-handed circularly polarized (LHCP)and right-handed circularly polarized (RHCP) waves is simulated in CST microwave studio. The results show that the cross-polarization transmission magnitude keeps over 0.9 and does not change as the rotation angle varies. Moreover, the phase shift is twice the rotation angles and the direction of refracted beam is opposite under the above two different polarizations. In addition, the cross-polarization conversion ratio is above 0.9 from 14 GHz to 15.8 GHz. On the premise of high transmission magnitude, the phase of the cross-polarized transmission can be freely manipulated via varying axis orientation. By spatially arranging six unit cells in rotation angle steps of 30, a PGM with a phase difference of 60 between adjacent unit cells is designed. As is well known, linearly-polarized (LP) EM waves can be decomposed into LHCP and RHCP waves with equal amplitudes. Therefore, an LP wave through the PGM will be separated into two counterpropagating CP waves. The high-efficiency anomalous refraction of the PGM is verified from simulated near-field electric field distributions and far field normalized power patterns. The simulated refracted angle is 33.5, which is in accordance with the theoretical designed value (33.75). Moreover, the transmissive power intensity spectrum under the normally-incident LP waves is simulated and measured. The simulated and measured results are in good agreement with each other, showing that the transmitted wave is perfectly split into two counterpropagating waves from 14.9 GHz to 15.3 GHz. Compared with the available transmissive PGMs, our proposed PGM features high efficiency and thin structure with only single layer, making the proposed PGM a promising alternative to manipulating propagation and polarization of EM waves.
      通信作者: 王光明, wgming01@sina.com
    • 基金项目: 国家自然科学基金(批准号:61372034)资助的课题.
      Corresponding author: Wang Guang-Ming, wgming01@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372034).
    [1]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110

    [2]

    Wu C J, Cheng Y Z, Wang W Y, He B, Gong R Z 2015 Acta Phys. Sin. 64 164102 (in Chinese) [吴晨骏, 程用志, 王文颖, 何博, 龚荣洲 2015 64 164102]

    [3]

    Xu H X, Wang G M, Qi M Q, Liang J G, Gong J Q, Xu Z M 2012 Phys. Rev. B 86 205104

    [4]

    Li H P, Wang G M, Xu H X, Cai T, Liang J G 2015 IEEE Trans. Antennas Propag. 63 5144

    [5]

    Zhu H L, Cheung S W, Liu X H, Yuk T I 2014 IEEE Trans. Antennas Propag. 62 2891

    [6]

    Xu H X, Wang G M, Liang J G, Qi M Q, Gao X 2013 IEEE Trans. Antennas Propag. 61 3442

    [7]

    Nathaniel K. Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [8]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522

    [9]

    Zhang L B, Zhou P H, Chen H Y, Lu H P, Xie J L, Deng L J 2015 Appl. Phys. B 120 617

    [10]

    Song K, Liu Y H, Luo C R, Zhao X P 2014 J. Phys. D: Appl. Phys. 47 505104

    [11]

    Yu J B, Ma H, Wang J F, Feng M D, Li Y F, Qu S B 2015 Acta Phys. Sin. 64 178101 (in Chinese) [余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波 2015 64 178101]

    [12]

    Cai T, Wang G M, Zhang X F, Liang J G, Zhuang Y Q, Liu D, Xu H X 2015 IEEE Trans. Antennas Propag. 63 5629

    [13]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Zheng L, Xu Z, Zhang A X 2014 J. Phys. D: Appl. Phys. 47 425103

    [14]

    Shi H Y, Li J X, Zhang A X, Jiang Y S, Wang J F, Xu Z, Xia S 2015 IEEE Antennas Wireless Propag. Lett. 14 104

    [15]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [16]

    Sun S L, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S Y, Kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223

    [17]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nature Mater. 11 426

    [18]

    Yang Q L, Gu J Q, Wang D Y, Zhang X Q, Tian Z, Ouyang C M, Ranjan S, Han J G, Zhang W L 2014 Opt. Express 22 25931

    [19]

    Monticone F, Estakhri N M, AlA 2013 Phys. Rev. Lett. 110 203903

  • [1]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110

    [2]

    Wu C J, Cheng Y Z, Wang W Y, He B, Gong R Z 2015 Acta Phys. Sin. 64 164102 (in Chinese) [吴晨骏, 程用志, 王文颖, 何博, 龚荣洲 2015 64 164102]

    [3]

    Xu H X, Wang G M, Qi M Q, Liang J G, Gong J Q, Xu Z M 2012 Phys. Rev. B 86 205104

    [4]

    Li H P, Wang G M, Xu H X, Cai T, Liang J G 2015 IEEE Trans. Antennas Propag. 63 5144

    [5]

    Zhu H L, Cheung S W, Liu X H, Yuk T I 2014 IEEE Trans. Antennas Propag. 62 2891

    [6]

    Xu H X, Wang G M, Liang J G, Qi M Q, Gao X 2013 IEEE Trans. Antennas Propag. 61 3442

    [7]

    Nathaniel K. Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [8]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522

    [9]

    Zhang L B, Zhou P H, Chen H Y, Lu H P, Xie J L, Deng L J 2015 Appl. Phys. B 120 617

    [10]

    Song K, Liu Y H, Luo C R, Zhao X P 2014 J. Phys. D: Appl. Phys. 47 505104

    [11]

    Yu J B, Ma H, Wang J F, Feng M D, Li Y F, Qu S B 2015 Acta Phys. Sin. 64 178101 (in Chinese) [余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波 2015 64 178101]

    [12]

    Cai T, Wang G M, Zhang X F, Liang J G, Zhuang Y Q, Liu D, Xu H X 2015 IEEE Trans. Antennas Propag. 63 5629

    [13]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Zheng L, Xu Z, Zhang A X 2014 J. Phys. D: Appl. Phys. 47 425103

    [14]

    Shi H Y, Li J X, Zhang A X, Jiang Y S, Wang J F, Xu Z, Xia S 2015 IEEE Antennas Wireless Propag. Lett. 14 104

    [15]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [16]

    Sun S L, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S Y, Kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223

    [17]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nature Mater. 11 426

    [18]

    Yang Q L, Gu J Q, Wang D Y, Zhang X Q, Tian Z, Ouyang C M, Ranjan S, Han J G, Zhang W L 2014 Opt. Express 22 25931

    [19]

    Monticone F, Estakhri N M, AlA 2013 Phys. Rev. Lett. 110 203903

  • [1] 刘凯越, 李腾耀, 郑娜娥, 田志富, 蔡通, 王彦朝, 曹超华. 基于迁移学习的共形超构表面散射场高效智能计算方法.  , 2024, 73(23): 234101. doi: 10.7498/aps.73.20241160
    [2] 张鸿伟, 蔡仁昊, 李吉宁, 钟凯, 王与烨, 徐德刚, 姚建铨. 基于超表面的太赫兹与中长波红外高效分光器件.  , 2024, 73(19): 197801. doi: 10.7498/aps.73.20241066
    [3] 张建国, 易早, 康永强, 任浩, 王文艳, 周婧璠, 郝慧珍, 常会东, 高英豪, 陈亚慧, 李艳娜. 局域表面等离子体谐振辅助的高效率宽频带可调谐偏振转换超表面.  , 2022, 71(12): 128101. doi: 10.7498/aps.70.20220288
    [4] 张建国, 易早, 康永强, 任浩, 王文艳, 周婧璠, 郝慧珍, 常会东, 高英豪, 陈亚慧, 李艳娜. 局域表面等离子体谐振辅助的高效率宽频带可调谐偏振转换超表面.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220288
    [5] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器.  , 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [6] 汪肇坤, 杨振宇, 陶欢, 赵茗. 复合结构螺旋超材料对光波前的高效调控.  , 2016, 65(21): 217802. doi: 10.7498/aps.65.217802
    [7] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜.  , 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [8] 庄亚强, 王光明, 张小宽, 张晨新, 蔡通, 李海鹏. 基于梯度超表面的反射型线-圆极化转换器设计.  , 2016, 65(15): 154102. doi: 10.7498/aps.65.154102
    [9] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用.  , 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [10] 吴晨骏, 程用志, 王文颖, 何博, 龚荣洲. 基于十字形结构的相位梯度超表面设计与雷达散射截面缩减验证.  , 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [11] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射.  , 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [12] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面.  , 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [13] 刘桐君, 习翔, 令永红, 孙雅丽, 李志伟, 黄黎蓉. 宽入射角度偏振不敏感高效异常反射梯度超表面.  , 2015, 64(23): 237802. doi: 10.7498/aps.64.237802
    [14] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证.  , 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [15] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证.  , 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [16] 李恒, 于斌, 陈丹妮, 牛憨笨. 高效双螺旋点扩展函数相位片的设计与实验研究.  , 2013, 62(12): 124201. doi: 10.7498/aps.62.124201
    [17] 阴明, 周寿桓, 冯国英. 可调谐准相位匹配高效宽带二次谐波转换.  , 2012, 61(23): 234206. doi: 10.7498/aps.61.234206
    [18] 刘昆陇, 洪伟毅, 王少义, 张庆斌, 陆培祥. 中红外偏振态门驱动产生高效的极宽超连续谱.  , 2011, 60(6): 063203. doi: 10.7498/aps.60.063203
    [19] 王金东, 秦晓娟, 魏正军, 刘小宝, 廖常俊, 刘颂豪. 一种高效量子密钥分发系统主动相位补偿方法.  , 2010, 59(1): 281-286. doi: 10.7498/aps.59.281
    [20] 林一满, 梁瑞生, 路轶群, 路 洪, 郭邦红, 刘颂豪. 自动补偿高效的差分相位编码QKD系统.  , 2007, 56(7): 3931-3936. doi: 10.7498/aps.56.3931
计量
  • 文章访问数:  8197
  • PDF下载量:  886
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-04
  • 修回日期:  2016-05-23
  • 刊出日期:  2016-08-05

/

返回文章
返回
Baidu
map