搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强场隧穿电离模式下的氦原子电离时间问题研究

王艳海

引用本文:
Citation:

强场隧穿电离模式下的氦原子电离时间问题研究

王艳海

Ionization time of He atom in the strong field tunnelling ionization mode

Wang Yan-Hai
PDF
导出引用
  • 电子隧穿电离动力学在阿秒物理学领域具有极为重要的作用,电子隧穿电离时间是该领域的最基本问题之一,在理论和实验上仍然存在着广泛的争议. 本文通过数值求解含时薛定谔方程,计算了阶跃强激光场作用下He原子中单电子隧穿电离时间,计算结果表明电子隧穿合成势垒的最大概率流密度时间和基态波函数演化到连续态的时间与Keldysh时间非常接近. 讨论了电子隧穿时间为什么不能定义为最大电离率和激光峰值之间的延时的原因. 相比其他文献给出的隧穿时间定义,基态波函数演化到连续态的时间与实际的电离过程更为相符,把该时间定义为电子隧穿合成势垒的时间更为确切. 根据本文的分析结果,提出了采用光场合成技术测量电子实际的隧穿电离时间的实验方案.
    The question of how long it takes for a particle to tunnel through a barrier, which was first put forward by MacColl (Phys. Rev. 40 621 (1932)), belongs to the fundamental process of quantum physics and has been the subject of intense debate since then. Many efforts have been devoted to addressing this question about how to define, explain and measure this tunneling time, but widespread controversies still exist in theories and experiments. Attosecond physics offers insights into ultrafast electron dynamics in atoms and moleculars on the attosecond (10-18 s) timescales, and therefore, ionization of atoms or moleculars in a strong laser filed allows for tackling this question in an experimentally and conceptually well-defined manner. The tunneling ionization dynamics of electrons plays an extremely important role in the field, since tunneling is the first crucial step in strong field ionizations of atoms and molecules and underlies virtually all present experiments in attosecond science. In the present paper, the tunneling ionization time of a single-active electron tunneling through a He atom subjected to a step static electric field, defined as a nonvanishing positive time delay between the instant of switch-on of the step static electric field and the one of ionization, is obtained from the numerical solution of the time-dependent Schrdinger equation in one dimension. The results show that the time delay between the instant of maximum probability current at the potential barrier exit and the one of switch-on of the step static electric field and the time delay needed by the ground wave function evolving to the continuum, which can be expressed as the transition element of the incident and transmitted parts of the wave function, are both very close to the Keldysh time explained as the time it takes for the bound electron having velocity = iIp/2 to cross the tunneling barrier. Compared with the definition of tunneling time delay in other literature, the one of the ground wave function evolution to the continuous state is much consistent with the actual ionization process. The reason why the electron tunneling time cannot be defined as the time delay between the maximum ionization rate and the instant of the laser peak field is that the wave function could penetrate the tunneling barrier earlier if a few-cycle optical field is adopted in experiment. According to the analysis in this article, an experimental method of measuring the actual electron tunneling ionization time using the optical field synthesis technique is proposed. The results of this paper will be helpful in tackling the problem of tunneling time in strong ionization.
      通信作者: 王艳海, wangyanhai@hotmail.com
    • 基金项目: 国家自然科学基金(批准号:11504081)资助的课题.
      Corresponding author: Wang Yan-Hai, wangyanhai@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504081).
    [1]

    Maccoll L A 1932 Phys. Rev. 40 621

    [2]

    Keldysh L {1965 Sov. Phys. JETP 20 1307

    [3]

    Perelomov A, Popov V, Terent'ev M {1966 Sov. Phys. JETP 23 924

    [4]

    Bttiker M, Landauer R {1985 Phys. Scr. 49 711

    [5]

    Landauer R, Martin T 1994 Rev. Mod. Phys. 66 217

    [6]

    Yamada N 2004 Phys. Rev. Lett. 93 170401

    [7]

    Eckle P, Pfeiffer A, Cirelli C, Staudte A, Drner R, Muller H, Bttiker M, Keller U 2008 Science 322 1525

    [8]

    Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-Samha M, Madsen L B, Keller U 2011 Nature Phys. 8 76

    [9]

    Shafir D, Soifer H, Bruner B D, Dagan M, Mairesse Y, Patchkovskii S, Ivanov M Y, Smirnova O, Dudovich N. 2012 Nature 485 343

    [10]

    Mcdonald C R, Orlando G, Vampa G, Brabec T 2013 Phys. Rev. Lett. 111 090405

    [11]

    Hassan M T, Luu T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A, Pervak V, Krausz F 2016 Nature 530 66

    [12]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [13]

    Corkum P B 2011 Phys. Today 64 36

    [14]

    Luo X Y, Liu H F, Ben S, Liu X S 2016 Acta Phys. Sin. 65 123201 (in Chinese) [罗香怡, 刘海凤, 贲帅, 刘学深 2016 65 123201]

    [15]

    Liu Y, Jia C, Guo F M, Yang Y J 2016 Acta Phys. Sin. 65 033201 (in Chinese) [刘艳, 贾成, 郭福明, 杨玉军 2016 65 033201]

    [16]

    Schultze M, Fie M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris T 2010 Science 328 1658

    [17]

    Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F 2010 Nature 466 739

    [18]

    Gallmann L, Landsman A, Weger M, Maurer J, Boge R, Ludwig A, Heuser S, Cirelli C, Keller U 2013 Conference on and International Quantum Electronics Conference San Jose, Califonia, United States, June 9-14, 2013 p1

    [19]

    Landsman A S, Keller U 2015 Phys. Rep. 547 1

    [20]

    Zhao J, Lein M 2013 Phys. Rev. Lett. 111 043901

    [21]

    Su Q, Eberly J H 1991 Phys. Rev. A 44 5997

    [22]

    Lehtovaara L, Toivanen J, Eloranta J 2007 J. Comput. Phys. 221 148

    [23]

    Zhang G T 2011 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese) [张刚台 2011 博士学位论文 (吉林: 吉林大学)]

    [24]

    Feit M, Fleck J, Steiger A 1982 J. Comput. Phys. 47 412

    [25]

    Teeny N, Yakaboylu E, Bauke H, Keitel C H 2016 Phys. Rev. Lett. 116 063003

    [26]

    Feynman R P, Hibbs A R (Translated by Zhang B G) 1986 Quantum Mechanics and Path Integrals (Beijing: Science Press) pp171-178 (in Chinese) [费曼, 希布斯 著 (张邦固 译) 1986 量子力学与路径积分 (北京: 科学出版社) 第171-178页]

    [27]

    Landsman A S, Keller U 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204024

    [28]

    Yudin G L, Ivanov M Y {2001 Phys. Rev. A 64 289

    [29]

    Orlando G, Mcdonald C R, Protik N H, Vampa G, Brabec T {2014 J. Phys. B: At., Mol. Opt. Phys. 47 44

    [30]

    Pfeiffer A N, Cirelli C, Smolarski M, Keller U 2013 Chem. Phys. 414 84

    [31]

    Wirth A, Hassan M T, Grgura I, Gagnon J, Moulet A, Luu T, Pabst S, Santra R, Alahmed Z, Azzeer A 2011 Science 334 195

    [32]

    Hassan M T, Wirth A, Grguras I, Moulet A, Luu T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301

  • [1]

    Maccoll L A 1932 Phys. Rev. 40 621

    [2]

    Keldysh L {1965 Sov. Phys. JETP 20 1307

    [3]

    Perelomov A, Popov V, Terent'ev M {1966 Sov. Phys. JETP 23 924

    [4]

    Bttiker M, Landauer R {1985 Phys. Scr. 49 711

    [5]

    Landauer R, Martin T 1994 Rev. Mod. Phys. 66 217

    [6]

    Yamada N 2004 Phys. Rev. Lett. 93 170401

    [7]

    Eckle P, Pfeiffer A, Cirelli C, Staudte A, Drner R, Muller H, Bttiker M, Keller U 2008 Science 322 1525

    [8]

    Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-Samha M, Madsen L B, Keller U 2011 Nature Phys. 8 76

    [9]

    Shafir D, Soifer H, Bruner B D, Dagan M, Mairesse Y, Patchkovskii S, Ivanov M Y, Smirnova O, Dudovich N. 2012 Nature 485 343

    [10]

    Mcdonald C R, Orlando G, Vampa G, Brabec T 2013 Phys. Rev. Lett. 111 090405

    [11]

    Hassan M T, Luu T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A, Pervak V, Krausz F 2016 Nature 530 66

    [12]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [13]

    Corkum P B 2011 Phys. Today 64 36

    [14]

    Luo X Y, Liu H F, Ben S, Liu X S 2016 Acta Phys. Sin. 65 123201 (in Chinese) [罗香怡, 刘海凤, 贲帅, 刘学深 2016 65 123201]

    [15]

    Liu Y, Jia C, Guo F M, Yang Y J 2016 Acta Phys. Sin. 65 033201 (in Chinese) [刘艳, 贾成, 郭福明, 杨玉军 2016 65 033201]

    [16]

    Schultze M, Fie M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris T 2010 Science 328 1658

    [17]

    Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F 2010 Nature 466 739

    [18]

    Gallmann L, Landsman A, Weger M, Maurer J, Boge R, Ludwig A, Heuser S, Cirelli C, Keller U 2013 Conference on and International Quantum Electronics Conference San Jose, Califonia, United States, June 9-14, 2013 p1

    [19]

    Landsman A S, Keller U 2015 Phys. Rep. 547 1

    [20]

    Zhao J, Lein M 2013 Phys. Rev. Lett. 111 043901

    [21]

    Su Q, Eberly J H 1991 Phys. Rev. A 44 5997

    [22]

    Lehtovaara L, Toivanen J, Eloranta J 2007 J. Comput. Phys. 221 148

    [23]

    Zhang G T 2011 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese) [张刚台 2011 博士学位论文 (吉林: 吉林大学)]

    [24]

    Feit M, Fleck J, Steiger A 1982 J. Comput. Phys. 47 412

    [25]

    Teeny N, Yakaboylu E, Bauke H, Keitel C H 2016 Phys. Rev. Lett. 116 063003

    [26]

    Feynman R P, Hibbs A R (Translated by Zhang B G) 1986 Quantum Mechanics and Path Integrals (Beijing: Science Press) pp171-178 (in Chinese) [费曼, 希布斯 著 (张邦固 译) 1986 量子力学与路径积分 (北京: 科学出版社) 第171-178页]

    [27]

    Landsman A S, Keller U 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204024

    [28]

    Yudin G L, Ivanov M Y {2001 Phys. Rev. A 64 289

    [29]

    Orlando G, Mcdonald C R, Protik N H, Vampa G, Brabec T {2014 J. Phys. B: At., Mol. Opt. Phys. 47 44

    [30]

    Pfeiffer A N, Cirelli C, Smolarski M, Keller U 2013 Chem. Phys. 414 84

    [31]

    Wirth A, Hassan M T, Grgura I, Gagnon J, Moulet A, Luu T, Pabst S, Santra R, Alahmed Z, Azzeer A 2011 Science 334 195

    [32]

    Hassan M T, Wirth A, Grguras I, Moulet A, Luu T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301

  • [1] 李春雷, 郑军, 王小明, 徐燕. 光场辐照下稀磁半导体/半导体超晶格中自旋电子输运特性研究.  , 2023, 72(22): 227201. doi: 10.7498/aps.72.20230935
    [2] 车佳殷, 陈超, 李卫艳, 李维, 陈彦军. 强场原子电离响应时间的研究进展.  , 2023, 72(19): 193301. doi: 10.7498/aps.72.20230983
    [3] 周子童, 闫韶华, 赵巍胜, 冷群文. 隧穿磁阻传感器研究进展.  , 2022, 71(5): 058504. doi: 10.7498/aps.71.20211883
    [4] 赵猛, 全威, 肖智磊, 许松坡, 王志强, 王明辉, 成思进, 吴文卓, 王艳兰, 赖炫扬, 柳晓军. 强激光场驱动Ar原子电离中的隧穿延时.  , 2022, 71(23): 233203. doi: 10.7498/aps.71.20221295
    [5] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测.  , 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [6] 沈星晨, 刘洋, 陈淇, 吕航, 徐海峰. 超快强激光场中原子分子的里德伯态激发.  , 2022, 71(23): 233202. doi: 10.7498/aps.71.20221258
    [7] 陶建飞, 夏勤智, 廖临谷, 刘杰, 刘小井. 强激光场原子电离光电子轨迹干涉全息理论及应用.  , 2022, 71(23): 233206. doi: 10.7498/aps.71.20221296
    [8] 黄雪飞, 苏杰, 廖健颖, 李盈傧, 黄诚. 反向旋转双色椭偏场中原子隧穿电离电子的全息干涉.  , 2022, 71(9): 093202. doi: 10.7498/aps.71.20212226
    [9] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间.  , 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [10] 郭丽, 韩申生, 陈京. 利用类维格纳分布函数方法研究阈上电离.  , 2016, 65(22): 223203. doi: 10.7498/aps.65.223203
    [11] 赵磊, 张琦, 董敬伟, 吕航, 徐海峰. 不同原子在飞秒强激光场中的里德堡态激发和双电离.  , 2016, 65(22): 223201. doi: 10.7498/aps.65.223201
    [12] 黎明, 陈军, 宫箭. InAs/InP柱型量子线中隧穿时间和逃逸问题的研究.  , 2014, 63(23): 237303. doi: 10.7498/aps.63.237303
    [13] 张科智, 王建军, 刘国荣, 薛具奎. 两组分BECs在光晶格中的隧穿动力学及其周期调制效应.  , 2010, 59(5): 2952-2961. doi: 10.7498/aps.59.2952
    [14] 周远明, 俞国林, 高矿红, 林铁, 郭少令, 褚君浩, 戴宁. 弱耦合GaAs/AlGaAs/InGaAs双势阱隧穿结构的磁隧穿特性研究.  , 2010, 59(6): 4221-4225. doi: 10.7498/aps.59.4221
    [15] 林恺, 杨树政. Vaidya-Bonner黑洞的费米子隧穿.  , 2009, 58(2): 744-748. doi: 10.7498/aps.58.744
    [16] 张靖仪, 赵 峥. 静质量不为零的粒子的量子隧穿辐射.  , 2006, 55(7): 3796-3798. doi: 10.7498/aps.55.3796
    [17] 蒋青权, 吴双清. Kerr解的新形式及其隧穿辐射.  , 2006, 55(9): 4428-4432. doi: 10.7498/aps.55.4428
    [18] 陈卫兵, 徐静平, 邹 晓, 李艳萍, 许胜国, 胡致富. 小尺寸MOSFET隧穿电流解析模型.  , 2006, 55(10): 5036-5040. doi: 10.7498/aps.55.5036
    [19] 唐 霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣. 冷原子穿越激光束的量子隧穿时间.  , 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [20] 王永生, 张光寅, 熊光楠, 徐叙瑢. BaFCl:Eu~(2+)光激励发光的多隧穿能级模型.  , 1995, 44(12): 2007-2012. doi: 10.7498/aps.44.2007
计量
  • 文章访问数:  6650
  • PDF下载量:  439
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-24
  • 修回日期:  2016-05-27
  • 刊出日期:  2016-08-05

/

返回文章
返回
Baidu
map