搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等价电子数组元Heusler合金Fe2RuSi中的原子占位

辛月朋 马悦兴 郝红月 孟凡斌 刘何燕 罗鸿志

引用本文:
Citation:

等价电子数组元Heusler合金Fe2RuSi中的原子占位

辛月朋, 马悦兴, 郝红月, 孟凡斌, 刘何燕, 罗鸿志

Site preference in isoelectronic Heusler alloy Fe2RuSi

Xin Yue-Peng, Ma Yue-Xing, Hao Hong-Yue, Meng Fan-Bin, Liu He-Yan, Luo Hong-Zhi
PDF
导出引用
  • 对等价电子数组元Heusler合金Fe2RuSi的原子占位、电子结构与磁性进行了理论与实验研究. 第一性原理计算表明, 虽然Fe2RuSi中Fe, Ru均有8个价电子, 但是Ru仍表现出强烈的占据A, C晶位倾向. 基态总能最低的是Fe与Ru分别占据A, C晶位的XA结构, 次低的是Fe, Ru在A, C位混乱占位的L21B结构, 且两者能量差很小. 这说明决定Heusler 合金中过渡族原子占位的因素除价电子数以外还可能有原子半径和共价杂化作用等. 态密度和差分电荷密度计算表明Heusler合金中主族元素与最近邻过渡族元素之间的p-d共价杂化对Heusler合金的占位有明显影响, 在XA结构中Ru与Si和Fe (B)之间都存在明显的杂化作用, 而在高能的L21结构中, Si与最近邻的Fe 杂化作用相当弱. XRD测试表明在室温Fe2RuSi存在A, C位之间的Fe-Ru反占位, 形成了能量次高的L21B结构, 这主要来自于混合熵对自由能的贡献及其引起的原子自发混乱占位. 在5 K下Fe2RuSi的饱和磁矩为4.87 B/f.u., 与计算值符合得相当好.
    The site preference, electronic structure, and magnetism of Heusler alloy Fe2RuSi are investigated theoretically and experimentally. The magnetic and electronic properties of Heusler alloys are strongly related to the atomic ordering and site preference in them. Usually, the site preference of the transition metal elements is determined by the number of their valence electrons. However, the recent results suggest that some new possible factors such as atomic radius should also be considered. Here we compare the phase stabilities of several different atomic orderings like XA, L21, DO3, L21B in Fe2RuSi, in which Fe and Ru atom have 8 valence electrons each, thus the influence of number of their valence electrons can be omitted. First-principles calculations suggest that Ru atom prefers entering sites A and C in the lattice. In ground state, the most stable structure is of XA type, in which Fe and Ru atoms occupy A and C sites, respectively and the second stable structure is L21B type, in which Fe and Ru atoms occupy A and C sites randomly. With Ru atom entering into the B site, the total energy increases rapidly. Thus there is still a strongly preferable occupation of Ru though Fe and Ru atom are isoelectronic. This confirms that the valence electrons rule may be not enough to determine the site preference of the transition metal element in Heusler alloy. The preferable occupation of Ru atom in Fe2RuSi can be explained from the electronic structure. It is found that in the XA DOS, there is strong hybridization between the electrons of the nearest Ru and Si or Fe (B) atom. However, in the high energy L21 structure the hybridization between Ru and the nearest Fe (A, C) is weak, which reduces its phase stability. This is confirmed further by the charge density difference calculation. Single phase Fe2RuSi with a lattice parameter of 5.79 is synthesized successfully. Comparing the superlattice reflections (111) and (200) in the experimental XRD pattern with those in the simulated patterns for different structures, we find that Fe2RuSi crystallizes in L21B structure rather than the most stable XA one at room temperature, which mainly originates from the contribution of mixed entropy to the free energy, and its caused atomic disorder at high temperatures. This disorder can be retained during the cooling procedure, while it does not influence the conclusion that Ru atom prefers the (A, C) sites in Fe2RuSi strongly. Finally, the saturation magnetization Ms at 5 K is 4.87 B/f.u., which agrees well with the theoretical result. The large total magnetic moment mainly comes from the contributions of Fe, especially Fe magnetic moments on B sites.
      通信作者: 罗鸿志, luo_hongzhi@163.com
    • 基金项目: 国家自然科学基金(批准号:11474343,51371075)和河北省教育厅基金(批准号:BJ2014012)资助的课题.
      Corresponding author: Luo Hong-Zhi, luo_hongzhi@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474343, 51371075) and the Foundation of Hebei Provincial Education Department, China (Grant No. BJ2014012).
    [1]

    de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    [2]

    Liu X H, Lin J B, Liu Y H, Jin Y J 2011 Acta Phys. Sin. 60 107104 (in Chinese) [刘新浩, 林景波, 刘艳辉, 金迎九 2011 60 107104]

    [3]

    Sakuraba Y, Izumi K, Iwase T, Bosu S, Saito K, Takanashi K, Miura Y, Futatsukawa K, Abe K, Shirai M 2010 Phys. Rev. B 82 094444

    [4]

    Ullakko K, Huang J K, Kantner C, O'handley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966

    [5]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957

    [6]

    Chadov S, Qi X, Kbler J, Fecher G H, Felser C, Zhang S C 2010 Nat. Mater. 9 541

    [7]

    Ouardi S, Fecher G H, Felser C, Kbler J 2013 Phys. Rev. Lett. 110 100401

    [8]

    Zhu W, Liu E K, Zhang C Z, Qin Y B, Luo H Z, Wang W H, Du Z W, Li J Q, Wu G H 2012 Acta Phys. Sin. 61 027502 (in Chinese) [朱伟, 刘恩克, 张常在, 秦元斌, 罗鸿志, 王文洪, 杜志伟, 李建奇, 吴光恒 2012 61 027502]

    [9]

    Kandpal H C, Fecher G H, Felser C 2007 J. Phys. D: Appl. Phys. 40 1507

    [10]

    Luo H Z, Xin Y P, Liu B H, Meng F B, Liu H Y, Liu E K, Wu G H 2016 J. Alloys Compd. 665 180

    [11]

    Kobayashi Y, Katada M, Sano H, Okada T, Asai K, Iwamoto M, Ambe F 1990 Hyperfine Interact. 54 585

    [12]

    Kobayashi Y, Asai K, Okada T, Ambe F 1994 Hyperfine Interact. 84 131

    [13]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [14]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [15]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [16]

    Endo K, Kanomata T, Nishihara H, Ziebeck K R A 2012 J. Alloys Compd. 510 1

    [17]

    Gelatt C D, Williams A R, Moruzzi V L 1983 Phys. Rev. B 27 2005

    [18]

    Wei Z Y, Liu E K, Chen J H, Li Y, Liu G D, Luo H Z, Xi X K, Zhang W, Wang W H, Wu G H 2015 Appl. Phys. Lett. 107 022406

    [19]

    Zhang H, Xiao M Z, Zhang Y G, Lu G X, Zhu S L 2011 Acta Phys. Sin. 60 026103 (in Chinese) [张辉, 肖明珠, 张国英, 路广霞, 朱圣龙 2011 60 026103]

    [20]

    Feng Y, Rhee J Y, Wiener T A, Lynch D W, Hubbard B E, Sievers A J, Schlagel D L, Lograsso T A, Miller L L 2001 Phys. Rev. B 63 165109

    [21]

    Kreiner G, Kalache A, Hausdorf S, Alijani V, Qian J F, Shan G C, Burkhardt U, Ouardi S, Felser C 2014 Anorg. Allg. Chem. 640 738

  • [1]

    de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    [2]

    Liu X H, Lin J B, Liu Y H, Jin Y J 2011 Acta Phys. Sin. 60 107104 (in Chinese) [刘新浩, 林景波, 刘艳辉, 金迎九 2011 60 107104]

    [3]

    Sakuraba Y, Izumi K, Iwase T, Bosu S, Saito K, Takanashi K, Miura Y, Futatsukawa K, Abe K, Shirai M 2010 Phys. Rev. B 82 094444

    [4]

    Ullakko K, Huang J K, Kantner C, O'handley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966

    [5]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957

    [6]

    Chadov S, Qi X, Kbler J, Fecher G H, Felser C, Zhang S C 2010 Nat. Mater. 9 541

    [7]

    Ouardi S, Fecher G H, Felser C, Kbler J 2013 Phys. Rev. Lett. 110 100401

    [8]

    Zhu W, Liu E K, Zhang C Z, Qin Y B, Luo H Z, Wang W H, Du Z W, Li J Q, Wu G H 2012 Acta Phys. Sin. 61 027502 (in Chinese) [朱伟, 刘恩克, 张常在, 秦元斌, 罗鸿志, 王文洪, 杜志伟, 李建奇, 吴光恒 2012 61 027502]

    [9]

    Kandpal H C, Fecher G H, Felser C 2007 J. Phys. D: Appl. Phys. 40 1507

    [10]

    Luo H Z, Xin Y P, Liu B H, Meng F B, Liu H Y, Liu E K, Wu G H 2016 J. Alloys Compd. 665 180

    [11]

    Kobayashi Y, Katada M, Sano H, Okada T, Asai K, Iwamoto M, Ambe F 1990 Hyperfine Interact. 54 585

    [12]

    Kobayashi Y, Asai K, Okada T, Ambe F 1994 Hyperfine Interact. 84 131

    [13]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [14]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [15]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [16]

    Endo K, Kanomata T, Nishihara H, Ziebeck K R A 2012 J. Alloys Compd. 510 1

    [17]

    Gelatt C D, Williams A R, Moruzzi V L 1983 Phys. Rev. B 27 2005

    [18]

    Wei Z Y, Liu E K, Chen J H, Li Y, Liu G D, Luo H Z, Xi X K, Zhang W, Wang W H, Wu G H 2015 Appl. Phys. Lett. 107 022406

    [19]

    Zhang H, Xiao M Z, Zhang Y G, Lu G X, Zhu S L 2011 Acta Phys. Sin. 60 026103 (in Chinese) [张辉, 肖明珠, 张国英, 路广霞, 朱圣龙 2011 60 026103]

    [20]

    Feng Y, Rhee J Y, Wiener T A, Lynch D W, Hubbard B E, Sievers A J, Schlagel D L, Lograsso T A, Miller L L 2001 Phys. Rev. B 63 165109

    [21]

    Kreiner G, Kalache A, Hausdorf S, Alijani V, Qian J F, Shan G C, Burkhardt U, Ouardi S, Felser C 2014 Anorg. Allg. Chem. 640 738

  • [1] 周金萍, 李春梅, 姜博, 黄仁忠. Co和Ni过量影响Co2NiGa合金晶体结构及相稳定性的第一性原理研究.  , 2023, 72(15): 156301. doi: 10.7498/aps.72.20230626
    [2] 孙凯晨, 刘爽, 高瑞瑞, 时翔宇, 刘何燕, 罗鸿志. Zn掺杂对Heusler型磁性形状记忆合金Ni2FeGa1–xZnx (x = 0—1)电子结构、磁性与马氏体相变影响的第一性原理研究.  , 2021, 70(13): 137101. doi: 10.7498/aps.70.20202179
    [3] 陈家华, 刘恩克, 李勇, 祁欣, 刘国栋, 罗鸿志, 王文洪, 吴光恒. Ga2基Heusler合金Ga2XCr(X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱的第一性原理计算.  , 2015, 64(7): 077104. doi: 10.7498/aps.64.077104
    [4] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究.  , 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [5] 贾红英, 代学芳, 王立英, 刘然, 王啸天, 李朋朋, 崔玉亭, 王文洪, 吴光恒, 刘国栋. CuHg2Ti型Ti2Cr基合金的电子结构、能隙起源和磁性研究.  , 2014, 63(10): 107103. doi: 10.7498/aps.63.107103
    [6] 王啸天, 代学芳, 贾红英, 王立英, 刘然, 李勇, 刘笑闯, 张小明, 王文洪, 吴光恒, 刘国栋. Heusler型X2RuPb (X=Lu, Y)合金的反带结构和拓扑绝缘性.  , 2014, 63(2): 023101. doi: 10.7498/aps.63.023101
    [7] 张玉洁, 李贵江, 刘恩克, 陈京兰, 王文洪, 吴光恒, 胡俊雄. 亚铁磁Heusler合金Mn2CoGa和Mn2CoAl掺杂Cr, Fe和Co的局域铁磁结构.  , 2013, 62(3): 037501. doi: 10.7498/aps.62.037501
    [8] 赵建涛, 赵昆, 王家佳, 余新泉, 于金, 吴三械. Heusler合金Mn2NiGa的第一性原理研究.  , 2012, 61(21): 213102. doi: 10.7498/aps.61.213102
    [9] 杜音, 王文洪, 张小明, 刘恩克, 吴光恒. 铁基Heusler合金Fe2Co1-xCrxSi的结构、磁性和输运性质的研究.  , 2012, 61(14): 147304. doi: 10.7498/aps.61.147304
    [10] 朱伟, 刘恩克, 张常在, 秦元斌, 罗鸿志, 王文洪, 杜志伟, 李建奇, 吴光恒. Heusler合金Fe2CrGa的磁性与结构.  , 2012, 61(2): 027502. doi: 10.7498/aps.61.027502
    [11] 罗礼进, 仲崇贵, 方靖淮, 赵永林, 周朋霞, 江学范. Heusler合金Mn2 NiAl的电子结构和磁性对四方畸变的响应及其压力响应.  , 2011, 60(12): 127502. doi: 10.7498/aps.60.127502
    [12] 赵昆, 张坤, 王家佳, 于金, 吴三械. Heusler合金Pd2 CrAl四方变形、磁性及弹性常数的第一性原理计算.  , 2011, 60(12): 127101. doi: 10.7498/aps.60.127101
    [13] 赵晶晶, 祁欣, 刘恩克, 朱伟, 钱金凤, 李贵江, 王文洪, 吴光恒. Co50Fe25-xMnxSi25系列合金的结构、磁性和半金属性研究.  , 2011, 60(4): 047108. doi: 10.7498/aps.60.047108
    [14] 赵晶晶, 舒迪, 祁欣, 刘恩克, 朱伟, 冯琳, 王文洪, 吴光恒. Co50Fe50-xSix合金的结构相变和磁性.  , 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.1
    [15] 刘新浩, 林景波, 刘艳辉, 金迎九. Full-Heusler合金X2YGa(X=Co,Fe,Ni;Y=V,Cr,Mn)的电子结构、磁性及半金属特性的第一性原理研究.  , 2011, 60(10): 107104. doi: 10.7498/aps.60.107104
    [16] 罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青. Heusler合金Ni2MnSi的电子结构、磁性、压力响应及四方变形的第一性原理研究.  , 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [17] 刘国栋, 王新强, 代学芳, 柳祝红, 于淑云, 陈京兰, 吴光恒. Fe和Co元素在铁磁性形状记忆合金Mn50Ni25-xFe(Co)xGa25中的作用.  , 2006, 55(9): 4883-4887. doi: 10.7498/aps.55.4883
    [18] 代学芳, 刘何燕, 闫丽琴, 曲静萍, 李养贤, 陈京兰, 吴光恒. CoNiZ系列合金的结构和马氏体相变性质.  , 2006, 55(5): 2534-2538. doi: 10.7498/aps.55.2534
    [19] 张 炜, 千正男, 隋 郁, 刘玉强, 苏文辉, 张 铭, 柳祝红, 刘国栋, 吴光恒. Heusler合金Co2TiSn的磁性与输运性能.  , 2005, 54(10): 4879-4883. doi: 10.7498/aps.54.4879
    [20] 千正男, 隋 郁, 刘玉强, 柳祝红, 刘国栋, 张 铭, 崔玉亭, 陈京兰, 吴光恒. 四元Heusler合金NiMnFeGa中Fe原子的磁性贡献.  , 2003, 52(9): 2304-2308. doi: 10.7498/aps.52.2304
计量
  • 文章访问数:  5750
  • PDF下载量:  215
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-01
  • 修回日期:  2016-05-16
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map