-
运用基于密度泛函理论的投影缀加波方法研究了Heusler合金Mn2NiGa的四方变形, 对立方和四方结构的磁矩、电子结构、弹性常数及声子谱进行了计算和分析. Mn原子是Mn2NiGa总磁矩的主要贡献者, 但Mn(A)、Mn(B)原子磁矩的值不等且呈反平行耦合, 因而Mn2NiGa合金在两种状态下均表现为亚铁磁结构. 四方变形中, Mn2NiGa在c/a=0.94和c/a=1.27处出现总能的局域极小值和局域最小值, 分别对应一个稳定的马氏体. 弹性常数的计算结果显示, Mn2NiGa的立方结构不满足立方相稳定性判据, 四方结构(c/a=0.94和c/a=1.27)的弹性常数满足相应的稳定性判据. 立方结构声子谱中存在虚频, 而四方结构(c/a=0.94和c/a=1.27)则不存在虚频, 验证了Mn2NiGa四方结构比立方结构稳定. c/a=1.27的四方结构Mn2NiGa转变为c/a=1.0的立方结构的相变温度在315 K左右.Tetragonal distortion of Mn2NiGa Heusler alloy is calculated by first-principles based on density functional theory with projector augmented wave pseudopotential, and the magnetism, electronic structure, elastic constants and phonon frequencies are also calculated and analyzed. The contribution of the spin magnetic moments of Mn atom to the total moment is largest for Mn2NiGa, and the Mn2NiGa alloy shows ferrimagnetism in these two cases, owning to the antiparallel but unbalanced magnetic moments of Mn (A) atom and Mn (B) atom. Analysis of tetragonal distortion shows that there is a local minimum total energy at c/a=0.94 and c/a=1.27, which corresponds to a stable martensitic phase. Elastic constants of Mn2NiGa reveal that cubic structure does not satisfy stability conditions, but tetragonal structure (c/a=0.94 and c/a=1.27) does. The imaginary values of phonon frequencies in cubic structures validate that tetragonal structure (c/a=0.94 and c/a=1.27) of Mn2NiGa is more stable than cubic structure. The phase transition temperature of c/a=1.27 tetragonal structure converting to cubic structure is about 315 K.
-
Keywords:
- Heusler alloy /
- tetragonal distortion /
- magnetism /
- elastic constants
[1] Karaman I, Basaran B, Karaca H E, Karsilayan A I, Chamlyakov Y I 2007 Appl. Phys. Lett. 90 172505
[2] Aparna C, Barman S R 2009 Appl. Phys. Lett. 94 161908
[3] Chatterjee S, Giri S, Majumdar S 2008 Phys. Rev. B 77 22440
[4] Luo H Z, Zhang H W, Zhu Z Y, Ma L, Xu S F, Wu G H, Zhu X X, Jiang C B, Xu H B 2008 J. Appl. Phys. 103 083908
[5] Yusuke O, Mikihiko O, Yasuo A 2009 J. Appl. Phys. 105 07C920
[6] Galanakis I, Mavropoulos P H, Dederichs P H 2006 J. Phys. D: Appl. Phys. 39 765
[7] Ullakko K, Huang J K, Kantner C, O' Handley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966
[8] Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G 2003 Appl. Phys. Lett. 82 424
[9] Fujita A, Fukamichi K, Gejima E, Kainunm R, Ishida K 2001 Appl. Phys. Lett. 77 3054
[10] Wuttig M, Li J, Craciuneseu C 2001 Scripta Mater. 44 2393
[11] Oikawa K, Wulff L, Iijima T, Gejima F, Ohmori T, Fujita A, Fukamichi K, Kainuma R, Ishida K 2001 Appl. Phys. Lett. 79 3290
[12] Sutou Y, Imano Y, Koeda N, Omori T, Kainum R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358
[13] Wan J F, Wang J N 2005 Physica B 355 172
[14] Jakob G, Elmers H J 2007 J. Magn. Magn. Mater. 310 12779
[15] Liu G D, Dai X F, Yu S Y, Zhu Z Y, Chen J L, Wu G H 2006 Phys. Rev. B 74 054435
[16] Hafner J 2008 J. Comput. Chem. 29 2044
[17] Kresse G Furthmuller J 1996 Phys. Rev. B 54 11169
[18] Torrent M, Jollet F, Bottin F 2008 Comput. Mater. Sci. 42 337
[19] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[20] Helmholdt R B, Buschow K H J 1987 J. Less-Comm. Met. 128 167
[21] Luo L J, Zhong C G, Jiang X F, Fang J H, Jiang Q 2010 Acta Phys. Sin. 59 0521 (in Chinese) [罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青 2010 59 0521]
[22] Godlevsky V V, Rabe K M 2001 Phys. Rev. B 63 134407
[23] Alippi P, Marcus P M, Scheffler M 1997 Phys. Rev. Lett. 78 3892
[24] Marcus P M, Alippi P 1998 Phys. Rev. B 57 1971
[25] Zhao K, Zhang K, Wang J J, Yu J, Wu S X 2011 Acta Phys. Sin. 60 127101 (in Chinese) [赵昆, 张坤, 王家佳, 于金, 吴三械 2011 60 127101]
[26] Trambly L G, Nguyen M D, M L 1995 Phys. Rev. B 52 7920
[27] Mehl M J, Osburn J E, Papaconstantopoulos D A, Klein B M 1990 Phys. Rev. B 41 10311
[28] Rached H, Rached D, Khenata R, Reshak Ali H, Rabah M 2009 Phys. Status Solidi B 246 1580
[29] Ozdemir Kart S, Uludogan M, Karaman, Cagin T 2008 Phys. Stat. Sol. A 205 1026
[30] Wallace D C 1972 Thermodynamics of Crystals (New York: John Wiley & Sons) p39
[31] Jona F, Marcus P M 2001 Phys. Rev. B 63 094113
[32] Yuan P F, Zhu W J, Xu J A, Liu S J, Jing F Q 2010 Acta Phys. Sin. 59 8755(in Chinese) [原鹏飞, 祝文军, 徐济安, 刘绍军, 经福谦 2010 59 8755]
[33] Hao Y J, Zhang L, Chen X R 2008 Phys. Rev. B 78 134101
[34] Mei Z G, Shang S L, Wang Y 2009 Phys. Rev. B 79 134102
[35] Wang Y, Liu Z K, Chen L Q 2004 Acta Mater. 52 2665
[36] Wang Y, Ahuja R, Johansson B 2004 Int. J. Quantum. Chem. 96 501
[37] Dove M T 1993 Introduction to Lattice Dynamics (Cambridge: Cambridge University Press) p258
[38] Liu G D 2007 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [刘国栋 2007 博士学位论文 (重庆: 重庆大学)]
-
[1] Karaman I, Basaran B, Karaca H E, Karsilayan A I, Chamlyakov Y I 2007 Appl. Phys. Lett. 90 172505
[2] Aparna C, Barman S R 2009 Appl. Phys. Lett. 94 161908
[3] Chatterjee S, Giri S, Majumdar S 2008 Phys. Rev. B 77 22440
[4] Luo H Z, Zhang H W, Zhu Z Y, Ma L, Xu S F, Wu G H, Zhu X X, Jiang C B, Xu H B 2008 J. Appl. Phys. 103 083908
[5] Yusuke O, Mikihiko O, Yasuo A 2009 J. Appl. Phys. 105 07C920
[6] Galanakis I, Mavropoulos P H, Dederichs P H 2006 J. Phys. D: Appl. Phys. 39 765
[7] Ullakko K, Huang J K, Kantner C, O' Handley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966
[8] Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G 2003 Appl. Phys. Lett. 82 424
[9] Fujita A, Fukamichi K, Gejima E, Kainunm R, Ishida K 2001 Appl. Phys. Lett. 77 3054
[10] Wuttig M, Li J, Craciuneseu C 2001 Scripta Mater. 44 2393
[11] Oikawa K, Wulff L, Iijima T, Gejima F, Ohmori T, Fujita A, Fukamichi K, Kainuma R, Ishida K 2001 Appl. Phys. Lett. 79 3290
[12] Sutou Y, Imano Y, Koeda N, Omori T, Kainum R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358
[13] Wan J F, Wang J N 2005 Physica B 355 172
[14] Jakob G, Elmers H J 2007 J. Magn. Magn. Mater. 310 12779
[15] Liu G D, Dai X F, Yu S Y, Zhu Z Y, Chen J L, Wu G H 2006 Phys. Rev. B 74 054435
[16] Hafner J 2008 J. Comput. Chem. 29 2044
[17] Kresse G Furthmuller J 1996 Phys. Rev. B 54 11169
[18] Torrent M, Jollet F, Bottin F 2008 Comput. Mater. Sci. 42 337
[19] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[20] Helmholdt R B, Buschow K H J 1987 J. Less-Comm. Met. 128 167
[21] Luo L J, Zhong C G, Jiang X F, Fang J H, Jiang Q 2010 Acta Phys. Sin. 59 0521 (in Chinese) [罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青 2010 59 0521]
[22] Godlevsky V V, Rabe K M 2001 Phys. Rev. B 63 134407
[23] Alippi P, Marcus P M, Scheffler M 1997 Phys. Rev. Lett. 78 3892
[24] Marcus P M, Alippi P 1998 Phys. Rev. B 57 1971
[25] Zhao K, Zhang K, Wang J J, Yu J, Wu S X 2011 Acta Phys. Sin. 60 127101 (in Chinese) [赵昆, 张坤, 王家佳, 于金, 吴三械 2011 60 127101]
[26] Trambly L G, Nguyen M D, M L 1995 Phys. Rev. B 52 7920
[27] Mehl M J, Osburn J E, Papaconstantopoulos D A, Klein B M 1990 Phys. Rev. B 41 10311
[28] Rached H, Rached D, Khenata R, Reshak Ali H, Rabah M 2009 Phys. Status Solidi B 246 1580
[29] Ozdemir Kart S, Uludogan M, Karaman, Cagin T 2008 Phys. Stat. Sol. A 205 1026
[30] Wallace D C 1972 Thermodynamics of Crystals (New York: John Wiley & Sons) p39
[31] Jona F, Marcus P M 2001 Phys. Rev. B 63 094113
[32] Yuan P F, Zhu W J, Xu J A, Liu S J, Jing F Q 2010 Acta Phys. Sin. 59 8755(in Chinese) [原鹏飞, 祝文军, 徐济安, 刘绍军, 经福谦 2010 59 8755]
[33] Hao Y J, Zhang L, Chen X R 2008 Phys. Rev. B 78 134101
[34] Mei Z G, Shang S L, Wang Y 2009 Phys. Rev. B 79 134102
[35] Wang Y, Liu Z K, Chen L Q 2004 Acta Mater. 52 2665
[36] Wang Y, Ahuja R, Johansson B 2004 Int. J. Quantum. Chem. 96 501
[37] Dove M T 1993 Introduction to Lattice Dynamics (Cambridge: Cambridge University Press) p258
[38] Liu G D 2007 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [刘国栋 2007 博士学位论文 (重庆: 重庆大学)]
计量
- 文章访问数: 7298
- PDF下载量: 817
- 被引次数: 0