-
Large-scale and high precision absolute distance measurement is essential in aerospace technology and advanced manufacturing. Traditional method of measuring distance cannot meet this requirement. Since the advent of optical frequency comb, it has brought a revolutionary breakthrough to absolute distance measurement. In the past decade, there were proposed many methods to measure long absolute distances with high accuracy. Especially, the simple method of using adjacent pulse-to-pulse distance as a ruler for distance measurement has been widely used. The accuracy of this method depends mainly on the knowledge of relative positions of the two overlapped pulses, i.e., pulse-to-pulse alignment. In our previous study, we have proposed a heterodyne interferometer based on synthetic wavelength method with femtosecond laser. The synthetic wavelength is derived from the virtual second harmonic and the real second harmonic, and the real second harmonic is produced by a piece of periodically poled LiNbO3 (PPLN) crystal. However, the second harmonic generation system makes the system complicated, and causes a great optical energy loss. In order to solve this problem, we generate the synthetic wavelength by two spatial band-pass filters in our present study, which can simplify the system greatly. Moreover, we can reduce the optical energy loss and tune the synthetic wavelength by controlling the angle of the filter. The synthetic wavelength used in the present system is 71.39 m. The interferometric phase of the synthetic wavelength is used as a mark for the pulse-to-pulse alignment. In order to reduce the influences of air disturbance and temperature variation, we set up a thermal-insulated cover for the interferometer to stabilize the environment in the system. By using this cover, the optical path length difference of the system in 450 s can be reduced from 8.56 m to 0.21 m. To demonstrate the efficacy of the method described above, the target mirror is moved by eight steps in steps of 5 mm. We compare the measurement results with those obtained by a commercial interferometer, and the residual error is less than 100 nm. Since the measurement range is larger than our previous study, the relative accuracy is better than the previous system. In conclusion, we demonstrate a synthetic-wavelength based absolute distance measurement by using heterodyne interferometry of a femtosecond laser. Two spatial band-pass filters are used to generate the synthetic wavelength, which can simplify the system. The comparison results show that the system has an accuracy better than 100 nm in a displacement of 40 mm. The accuracy of the experimental system can be further improved by making the common-path of the two interferometers longer, locking the fceo to the atomic clock and sampling the data synchronously.
-
Keywords:
- optical frequency comb /
- heterodyne interferometry /
- absolute distance measurement /
- synthetic wavelength
[1] Huang B, Feng M, Chen X D, et al. 2009 Laser J. 30 16 (in Chinese) [黄保, 冯鸣, 陈新东等 2009 激光杂志 30 16]
[2] Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2012 Acta Phys. Sin. 61 134205 (in Chinese) [曹士英, 孟飞, 林百科, 方占军, 李天初 2012 61 134205]
[3] Ye J 2004 Opt. Lett. 29 1153
[4] Cui M, Schouten R N, Bhattacharya N, Berg S A 2008 J. Eur. Opt. Soc. -Rapid 3 08003
[5] Balling P, Kren P, Masika P, van den Berg S A 2009 Opt. Express 17 9300
[6] Cui M, Zeitouny M G, van den Berg S A, Urbach H P, Braat J J M 2009 Opt. Lett. 34 1982
[7] Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photonics 4 716
[8] Lee J, Lee K, Lee S, Kim S, Kim Y 2012 Meas. Sci. Technol. 23 65203
[9] Schuhler N, Salvade Y, Leveque S, Dandliker R, Holzwarth R 2006 Opt. Lett. 31 3101
[10] Doloca N R, Meiners-Hagen K, Wedde M, Pollinger F, Abou-Zeid A 2010 Meas. Sci. Technol. 21 115302
[11] Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512
[12] Hyun S, Kim Y, Kim Y, Jin J, Kim S 2009 Meas. Sci. Technol. 20 95302
[13] van den Berg S A, Persijn S T, Kok G, Zeitouny M G, Bhattacharya N 2012 Phys. Rev. Lett. 108 183901
[14] Joo K, Kim S 2006 Opt. Express 14 5954
[15] Joo K, Kim S 2008 Opt. Express 16 19799
[16] Xia H, Zhang C 2010 Opt. Express 18 4118
[17] Wu H Z, Cao S Y, Zhang F M, Qu X H 2015 Acta Phys. Sin. 64 020601 (in Chinese) [吴翰钟, 曹士英, 张福民, 曲兴华 2015 64 020601]
[18] Liu T Y, Zhang F M, Wu H Z, Li J S, Shi Y Q, Qu X H 2016 Acta Phys. Sin. 65 020601 (in Chinese) [刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华 2016 65 020601]
[19] Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351
[20] Liu T, Newbury N R, Coddington I 2011 Opt. Express 19 18501
[21] Lee J, Han S, Lee K, Kim E, Bae S, Lee S, Kim S, Kim Y 2013 Meas. Sci. Technol. 24 45201
[22] Wu G, Zhou Q, Shen L, Ni K, Zeng X, Li Y 2014 Appl. Phys. Express 24 106602
[23] Wu G, Xiong S, Ni K, Zhu Z, Zhou Q 2015 Opt. Express 23 32044
[24] Wu G, Takahashi M, Inaba H, Minoshima K 2013 Opt. Lett. 38 2140
[25] Wu G, Arai K, Takahashi M, Inaba H, Minoshima K 2013 Meas. Sci. Technol. 24 15203
[26] Wu G, Takahashi M, Arai K, Inaba H, Minoshima K 2013 Sci. Rep. 3 1894
[27] Edln B 1966 Metrologia 2 71
[28] Bnsch G, Potulski E 1998 Metrologia 35 133
[29] Falaggis K, Towers D P, Towers C E M 2012 Appl. Opt. 51 6471
-
[1] Huang B, Feng M, Chen X D, et al. 2009 Laser J. 30 16 (in Chinese) [黄保, 冯鸣, 陈新东等 2009 激光杂志 30 16]
[2] Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2012 Acta Phys. Sin. 61 134205 (in Chinese) [曹士英, 孟飞, 林百科, 方占军, 李天初 2012 61 134205]
[3] Ye J 2004 Opt. Lett. 29 1153
[4] Cui M, Schouten R N, Bhattacharya N, Berg S A 2008 J. Eur. Opt. Soc. -Rapid 3 08003
[5] Balling P, Kren P, Masika P, van den Berg S A 2009 Opt. Express 17 9300
[6] Cui M, Zeitouny M G, van den Berg S A, Urbach H P, Braat J J M 2009 Opt. Lett. 34 1982
[7] Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photonics 4 716
[8] Lee J, Lee K, Lee S, Kim S, Kim Y 2012 Meas. Sci. Technol. 23 65203
[9] Schuhler N, Salvade Y, Leveque S, Dandliker R, Holzwarth R 2006 Opt. Lett. 31 3101
[10] Doloca N R, Meiners-Hagen K, Wedde M, Pollinger F, Abou-Zeid A 2010 Meas. Sci. Technol. 21 115302
[11] Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512
[12] Hyun S, Kim Y, Kim Y, Jin J, Kim S 2009 Meas. Sci. Technol. 20 95302
[13] van den Berg S A, Persijn S T, Kok G, Zeitouny M G, Bhattacharya N 2012 Phys. Rev. Lett. 108 183901
[14] Joo K, Kim S 2006 Opt. Express 14 5954
[15] Joo K, Kim S 2008 Opt. Express 16 19799
[16] Xia H, Zhang C 2010 Opt. Express 18 4118
[17] Wu H Z, Cao S Y, Zhang F M, Qu X H 2015 Acta Phys. Sin. 64 020601 (in Chinese) [吴翰钟, 曹士英, 张福民, 曲兴华 2015 64 020601]
[18] Liu T Y, Zhang F M, Wu H Z, Li J S, Shi Y Q, Qu X H 2016 Acta Phys. Sin. 65 020601 (in Chinese) [刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华 2016 65 020601]
[19] Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351
[20] Liu T, Newbury N R, Coddington I 2011 Opt. Express 19 18501
[21] Lee J, Han S, Lee K, Kim E, Bae S, Lee S, Kim S, Kim Y 2013 Meas. Sci. Technol. 24 45201
[22] Wu G, Zhou Q, Shen L, Ni K, Zeng X, Li Y 2014 Appl. Phys. Express 24 106602
[23] Wu G, Xiong S, Ni K, Zhu Z, Zhou Q 2015 Opt. Express 23 32044
[24] Wu G, Takahashi M, Inaba H, Minoshima K 2013 Opt. Lett. 38 2140
[25] Wu G, Arai K, Takahashi M, Inaba H, Minoshima K 2013 Meas. Sci. Technol. 24 15203
[26] Wu G, Takahashi M, Arai K, Inaba H, Minoshima K 2013 Sci. Rep. 3 1894
[27] Edln B 1966 Metrologia 2 71
[28] Bnsch G, Potulski E 1998 Metrologia 35 133
[29] Falaggis K, Towers D P, Towers C E M 2012 Appl. Opt. 51 6471
计量
- 文章访问数: 7839
- PDF下载量: 449
- 被引次数: 0