-
利用溶胶-凝胶分子模板法在表面覆金的玻璃基底上制备275 nm厚的介孔二氧化钛 (TiO2) 薄膜, 形成等离子体波导(PW)传感芯片. 利用菲涅耳公式拟合实验测得的导模共振波长, 得出TiO2薄膜的多孔度约为0.589. 基于光学互易定理仿真分析了置于介孔导波层中的电偶极子的拉曼辐射角分布, 结果表明辐射到衬底中的拉曼光包含沿导模共振角辐射的定向信号和辐射角小于全反射角的非定向信号; 前者需借助棱镜耦合器才能被探测到, 后者可从芯片背面直接被探测到; 从导波层直接辐射到空气中的拉曼光称为背向信号, 它的角分布呈发散式, 几乎不受棱镜耦合器影响; 定向信号的最大功率值远大于非定向信号和背向信号的相应值; 实验研究了吸附于介孔导波层中的结晶紫分子的拉曼光谱, 采用体光束激发方式探测到了定向、非定向和背向拉曼信号, 定向信号强度的最大值是非定向信号的2倍多, 在使用棱镜耦合器前后测得的背向信号强度几乎不变.
-
关键词:
- 介孔薄膜等离子体波导 /
- 背向拉曼 /
- 定向拉曼 /
- 棱镜耦合器
Gold film (40-nm-thick) sputtered on the glass substrate was decorated by using the sol-gel copolymer templated mesoporous TiO2 thin film (275-nm-thick) to fabricate the plasmon waveguide (PW). The Raman spectroscopy based on the Au/TiO2 PW is studied theoretically and experimentally. The surface morphology of the mesoprous TiO2 thin film and the cross-section of the PW chip are obtained by scanning electron microscopy (SEM) and the porosity (P) of mesoporous TiO2 thin film is determined to be about 0.589 by fitting the calculated waveguide coupling dips to the measured resonance wavelengths based on Fresnel equations. The angular distributions of Raman power from the molecular dipole located in the core layer of the waveguide are theoretically investigated based on the optical reciprocity theorem. The calculated results suggest that the Raman light radiated into the substrate consists of the directional Raman signal propagating at the resonant angle and the non-directional Raman signal whose radiation angles are smaller than the critical angle of total reflection. The directional Raman signal could be detected with the aid of the prism coupler, while the non-directional Raman signal can be detected directly on the back of the sensor chip. Furthermore, the angular distribution of the backscattered Raman signal is divergent and it is unaffected by the use of the prism coupler. The highest power of the directional Raman signal is much larger than that of the non-directional Raman signal and the backscattered Raman signal. The Raman spectroscopy based on the PW is studied by experiment with CV molecules adsorbed into the mesoporous TiO2 thin film. The Raman spectrum is obtained with the 532 nm laser radiating directly onto the waveguide surface. The experimental results show that the Raman signal including the directional Raman signal, non-directional Raman signal and the backscattered Raman signal can be detected with the PW chip. Besides, the directional Raman signal can only be detected by using the prism coupler, while the non-directional Raman signal can be detected directly on the back of the chip. Then the results also show that the peak intensity of the directional Raman signal is twice higher than that of the non-directional Raman signal. The further measurements reveal that the backscattered Raman signal hardly changes under the condition with or without the prism coupler. The experimental results mentioned above are in accordance with the theoretical calculations. The Raman spectroscopy based on PW in this work has potential value in further developing the Raman sensing technique.-
Keywords:
- mesoporous plasmon waveguide /
- backward Raman /
- directional Raman /
- prism coupler
[1] Dou X, Takama T, Yamaguchi Y, Yamamoto H, Ozaki Y 1997 Anal. Chem. 69 1492
[2] Grubisha D S, Lipert R J, Park H Y, Driskell J, Porter M D 2003 Anal. Chem. 75 5936
[3] Ni J, Lipert R J, Dawson G B, Porter M D 1999 Anal. Chem. 71 4903
[4] Zhang J, Li H T, Liao F, Guo J H, Hu F R 2015 Chin. Phys. Lett. 32 126801
[5] Cai Q, Lu S K, Liao F, Li Y Q, Ma S Z, Shao M W 2014 Nanoscale 6 8117
[6] Liu D L, Zhao Q, Lu D F, Qi Z M 2014 Chem. J. Chin. Univ. 35 2207 (in Chinese) [刘德龙, 赵乔, 逯丹凤, 祁志美 2014 高等学校化学学报 35 2207]
[7] Nie S, Emory S R 1997 Science 275 1102
[8] He L L, Rodda T, Haynes C L, Deschaines T, Strother T, Diez-Gonzalez F, Labuza T P 2011 Anal. Chem. 83 1510
[9] Wei H, Xu H X 2013 Nanoscale 5 10794
[10] Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese) [黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 58 1980]
[11] Jung H, Park M, Kang M, Jeong K H 2016 Light Sci. Appl. 5 doi:10.1038/lsa.2016.9
[12] Huang Y Z, Fang Y R, Zhang Z L, Zhu L, Sun M T 2014 Light Sci. Appl. 3 doi:10.1038/lsa.2014.80
[13] Zhao Q, Lu D F, Liu D L, Chen C, Hu D B, Qi Z M 2014 Acta Phys. -Chim. Sin. 30 1201 (in Chinese) [赵 乔, 逯丹凤, 刘德龙, 陈 晨, 胡德波, 祁志美 2014 物理化学学报 30 1201]
[14] Tian Z Q, Ren B, Mao B W 1997 J. Phys. Chem. 101 1338
[15] Moskovits M 1985 Rev. Mod. Phys. 57 783
[16] Ru E C L, Etchegoin P G 2006 Chem. Phys. Lett. 423 63
[17] Ding S Y, Wu D Y, Yang Z L, Ren B, Xu X, Tian Z Q 2008 Chem. J. Chin. Univ. 29 2569 (in Chinese) [丁松园, 吴德印, 杨志林, 任斌, 徐昕, 田中群 2008 高等学校化学学报 29 2569]
[18] Tang J, Liu A P, Li P G, Shen J Q, Tang W H 2014 Acta Phys. Sin. 63 107801 (in Chinese) [汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华 2014 63 107801]
[19] Kanger J S, Otto C 2003 Appl. Spectrosc. 57 1487
[20] McKee K J, Meyer M W, Smith E A 2012 Anal. Chem. 84 9049
[21] Meyer M W, McKee K J, Nguyen V H T, Smith E A 2012 J. Phys. Chem. C 116 24987
[22] Fu C C, Gu Y J, Wu Z Y, Wang Y Y, Xu S P, Xu W Q 2014 Sens. Actuators B: Chem. 201 173
[23] Chen C, Li J Y, Wang L, Lu D F, Qi Z M 2015 Phys. Chem. Chem. Phys. 17 21278
[24] Qi Z M, Honma I, Zhou H S 2006 Anal. Chem. 78 1034
[25] Alberius P C A, Frindell K L, Hayward R C, Kramer E J, Stucky G D, Chmelka B F 2002 Chem. Mater. 14 3284
[26] Zhang Z, Lu D F, Qi Z M 2012 J. Phys. Chem. C 116 3342
[27] Huo S X, Liu Q, Cao S H, Cai W P, Meng L Y, Xie K X, Zhai Y Y, Zong C, Yang Z L, Ren B, Li Y Q 2015 J. Phys. Chem. Lett. 6 2015
-
[1] Dou X, Takama T, Yamaguchi Y, Yamamoto H, Ozaki Y 1997 Anal. Chem. 69 1492
[2] Grubisha D S, Lipert R J, Park H Y, Driskell J, Porter M D 2003 Anal. Chem. 75 5936
[3] Ni J, Lipert R J, Dawson G B, Porter M D 1999 Anal. Chem. 71 4903
[4] Zhang J, Li H T, Liao F, Guo J H, Hu F R 2015 Chin. Phys. Lett. 32 126801
[5] Cai Q, Lu S K, Liao F, Li Y Q, Ma S Z, Shao M W 2014 Nanoscale 6 8117
[6] Liu D L, Zhao Q, Lu D F, Qi Z M 2014 Chem. J. Chin. Univ. 35 2207 (in Chinese) [刘德龙, 赵乔, 逯丹凤, 祁志美 2014 高等学校化学学报 35 2207]
[7] Nie S, Emory S R 1997 Science 275 1102
[8] He L L, Rodda T, Haynes C L, Deschaines T, Strother T, Diez-Gonzalez F, Labuza T P 2011 Anal. Chem. 83 1510
[9] Wei H, Xu H X 2013 Nanoscale 5 10794
[10] Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese) [黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 58 1980]
[11] Jung H, Park M, Kang M, Jeong K H 2016 Light Sci. Appl. 5 doi:10.1038/lsa.2016.9
[12] Huang Y Z, Fang Y R, Zhang Z L, Zhu L, Sun M T 2014 Light Sci. Appl. 3 doi:10.1038/lsa.2014.80
[13] Zhao Q, Lu D F, Liu D L, Chen C, Hu D B, Qi Z M 2014 Acta Phys. -Chim. Sin. 30 1201 (in Chinese) [赵 乔, 逯丹凤, 刘德龙, 陈 晨, 胡德波, 祁志美 2014 物理化学学报 30 1201]
[14] Tian Z Q, Ren B, Mao B W 1997 J. Phys. Chem. 101 1338
[15] Moskovits M 1985 Rev. Mod. Phys. 57 783
[16] Ru E C L, Etchegoin P G 2006 Chem. Phys. Lett. 423 63
[17] Ding S Y, Wu D Y, Yang Z L, Ren B, Xu X, Tian Z Q 2008 Chem. J. Chin. Univ. 29 2569 (in Chinese) [丁松园, 吴德印, 杨志林, 任斌, 徐昕, 田中群 2008 高等学校化学学报 29 2569]
[18] Tang J, Liu A P, Li P G, Shen J Q, Tang W H 2014 Acta Phys. Sin. 63 107801 (in Chinese) [汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华 2014 63 107801]
[19] Kanger J S, Otto C 2003 Appl. Spectrosc. 57 1487
[20] McKee K J, Meyer M W, Smith E A 2012 Anal. Chem. 84 9049
[21] Meyer M W, McKee K J, Nguyen V H T, Smith E A 2012 J. Phys. Chem. C 116 24987
[22] Fu C C, Gu Y J, Wu Z Y, Wang Y Y, Xu S P, Xu W Q 2014 Sens. Actuators B: Chem. 201 173
[23] Chen C, Li J Y, Wang L, Lu D F, Qi Z M 2015 Phys. Chem. Chem. Phys. 17 21278
[24] Qi Z M, Honma I, Zhou H S 2006 Anal. Chem. 78 1034
[25] Alberius P C A, Frindell K L, Hayward R C, Kramer E J, Stucky G D, Chmelka B F 2002 Chem. Mater. 14 3284
[26] Zhang Z, Lu D F, Qi Z M 2012 J. Phys. Chem. C 116 3342
[27] Huo S X, Liu Q, Cao S H, Cai W P, Meng L Y, Xie K X, Zhai Y Y, Zong C, Yang Z L, Ren B, Li Y Q 2015 J. Phys. Chem. Lett. 6 2015
计量
- 文章访问数: 5322
- PDF下载量: 187
- 被引次数: 0