搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁电体中偶极子的滞后对剩余极化的影响

曹万强 刘培朝 陈勇 潘瑞琨 祁亚军

引用本文:
Citation:

铁电体中偶极子的滞后对剩余极化的影响

曹万强, 刘培朝, 陈勇, 潘瑞琨, 祁亚军

Effect of hysteresis of dipole on remnant polarization in ferroelectrics

Cao Wan-Qiang, Liu Pei-Zhao, Chen Yong, Pan Rui-Kun, Qi Ya-Jun
PDF
导出引用
  • 铁电体的剩余极化强度随温度降低而下降的特性引起了人们对铁电体存储数据失效的担心. 运用铁电体的唯象理论和偶极子对交变电场的响应, 提出了在电滞回线测量中偶极子的滞后冷冻效应模型, 对极化的低温退化现象做了合理解释: 温度下降导致吉布斯自由能势垒增大, 致使偶极子对交变电场的响应时间延长. 引入响应的滞后因子发现, 极化强度随温度降低会出现峰值, 在低温下降直至为零, 可用偶极子的滞后与冻结效应描述. 详细研究结果表明: 因材料组份变化导致热力学参量的变化是重要因素: 铁电-顺电相变中软模系数的增大会导致剩余极化峰移向高温; 铁电性的增强, 温度极化系数的增大和耐压强度或饱和电场的增强均会抑制滞后效应, 从而使低温滞后效应移向低温. 运用导出的公式数值模拟BaTiO3/BiScO3复合陶瓷剩余极化强度的实验结果发现, BiScO3含量的增加, 使居里温度略有减小, 但导致了软模系数较大幅度的增加, 其结果是使偶极子的滞后效应发生在较高的温度. 软模系数与铁电体的极化特性, 铁电性, 介电性和力学性均密切相差. 研究结论表明: 在低温下铁电体的铁电性没有失效, 偶极子的低温冻结效应更有利于铁电体长久地保存数据.
    Decrease in remnant polarization at lower temperature, or low temperature degradation of polarization, in some ferroelectrics has attracted much attention. To investigate the mechanism of the decrease, phenomenological theory of ferroelectrics and the relevant mechanism of dipole in alternating electric field are used to develop a model of hysteresis-frozen effect of dipole in electric hysteresis loop measurement. Within the frame of Landau-Ginzburg-Devonshire theory, Ising model is used to derive the relationship among remnant polarization, coercive field, and saturated polarization strength. Then, two aspects are investigated: response of a dipole and thermodynamic properties of ferroelectric. Response of a dipole in an electric field is often described by relaxation time, on the assumption that Debye equation is satisfied. Potential barrier in the Debye equation is the Gibbs free energy barrier from one ferroelectric state, +P, to another ferroelectric state, -P. Increase in the Gibbs free energy barrier with temperature decreasing will prolong the relaxation time. As ferroelectrics can be taken as a capacitor, first order response function is used to introduce a hysteresis factor with measuring frequency and relaxation time into the expression of remnant polarization. In the aspect of thermodynamic properties of ferroelectric, the variation of compositions is a significant reason. In numerical simulation based on the derived formula the remnant polarization exhibits a frequency related peak, and shift of the peak depends on some other reasons: the increase of soft-mode coefficient in phase transition shifts the peak towards high temperature; the increases of coercive field, temperature-polarization coefficient (a concept defined in the present paper to indicate increase in polarization with increasing temperature) and saturated electric field shift the peak toward low temperature. Compared with the reported experimental results of BaTiO3/BiScO3 compound ceramics, the results show a good coincidence with numerical simulations. The parameter values of numerical simulation indicate that a large shift toward high temperature in peak of remnant polarization with increasing BiScO3 composition ratio is due to the increase in soft-mode coefficient with only small decrease in the Curie temperature. The soft-mode coefficient and temperature-polarization coefficient are closely related to polarization characteristic, ferroelectric, dielectric and mechanical properties. Therefore, the decrease in remnant polarization at low temperatures, ascribed to the hysteresis of dipole to a constant measuring frequency, may have an influence on changes in various properties, but freezing effect of dipole at low temperature can help ferroelectrics to save data longer.
      通信作者: 陈勇, chenyong@hubu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51202063, 51272072和51472078)资助的课题.
      Corresponding author: Chen Yong, chenyong@hubu.edu.cn
    • Funds: Project supported by the NNFSC (Grant Nos. 51202063, 51272072, 51472078).
    [1]

    Bharadwaja S S N, Kim J R, Ogihara H, Cross L E, Trolier-McKinstry S, Randall C A 2011 Phys. Rev. B 83 024106

    [2]

    Novotn V, Glogarov M, Hamplov V, Kapar M 2001 J. Chem. Phys. 115 9036

    [3]

    Chao L, Zuo G Y 2008 J. Phys.: Condens. Matter 20 232201

    [4]

    Ogihara H, Randall C A, Trolier-Mckinstry S 2009 J. Am. Ceram. Soc. 92 110

    [5]

    Bharadwaja S S N, Trolier-McKinstry S, Cross L E, Randall C A 2012 Appl. Phys. Lett. 100 022906

    [6]

    Li K, Zhu X L, Liu X Q, Chen X M 2013 Appl. Phys. Lett. 102 112912

    [7]

    Li K, Zhu X L, Liu X Q, Chen X M 2013 J. Appl. Phys. 144 044106

    [8]

    Sherrington D, Kirkpatrick S 1975 Phys. Rev. Lett. 35 1792

    [9]

    Saslow W M, Parker G 1986 Phys. Rev. Lett. 56 1074

    [10]

    Saslow W M 1987 Phys. Rev. B 35 3454

    [11]

    Jonason K, Mattsson J, Nordblad P 1996 Phys. Rev Lett. 77 2562

    [12]

    Cao W Q, Shang X Z 2015 Ferroelectr. Lett. 42 132

    [13]

    Ai S T, Wang J S, Lu W T 2013 Ferroelectr. Lett. 40 11

    [14]

    Mitsui T, Tatszaki, Nakamura E 1983 An Introduction to the Physics of Ferroelectrics (Beijing: Science Press) p152 (in Chinese) [三井利夫, 达崎达, 中村英二 1983 铁电物理学导论 (北京: 科学出版社第152页)]

    [15]

    Qu S H, Cao W Q 2014 Acta Phys. Sin. 63 047701 (in Chinese) [屈少华, 曹万强 2014 63 047701]

    [16]

    https://en.wikibooks.org/wiki/Signals_and_Systems/Table_of_Fourier_Transforms

    [17]

    Huang C J, Li K, Wu S Y, Zhu X L, Chen X M 2015 J. Materiomics 1 146

  • [1]

    Bharadwaja S S N, Kim J R, Ogihara H, Cross L E, Trolier-McKinstry S, Randall C A 2011 Phys. Rev. B 83 024106

    [2]

    Novotn V, Glogarov M, Hamplov V, Kapar M 2001 J. Chem. Phys. 115 9036

    [3]

    Chao L, Zuo G Y 2008 J. Phys.: Condens. Matter 20 232201

    [4]

    Ogihara H, Randall C A, Trolier-Mckinstry S 2009 J. Am. Ceram. Soc. 92 110

    [5]

    Bharadwaja S S N, Trolier-McKinstry S, Cross L E, Randall C A 2012 Appl. Phys. Lett. 100 022906

    [6]

    Li K, Zhu X L, Liu X Q, Chen X M 2013 Appl. Phys. Lett. 102 112912

    [7]

    Li K, Zhu X L, Liu X Q, Chen X M 2013 J. Appl. Phys. 144 044106

    [8]

    Sherrington D, Kirkpatrick S 1975 Phys. Rev. Lett. 35 1792

    [9]

    Saslow W M, Parker G 1986 Phys. Rev. Lett. 56 1074

    [10]

    Saslow W M 1987 Phys. Rev. B 35 3454

    [11]

    Jonason K, Mattsson J, Nordblad P 1996 Phys. Rev Lett. 77 2562

    [12]

    Cao W Q, Shang X Z 2015 Ferroelectr. Lett. 42 132

    [13]

    Ai S T, Wang J S, Lu W T 2013 Ferroelectr. Lett. 40 11

    [14]

    Mitsui T, Tatszaki, Nakamura E 1983 An Introduction to the Physics of Ferroelectrics (Beijing: Science Press) p152 (in Chinese) [三井利夫, 达崎达, 中村英二 1983 铁电物理学导论 (北京: 科学出版社第152页)]

    [15]

    Qu S H, Cao W Q 2014 Acta Phys. Sin. 63 047701 (in Chinese) [屈少华, 曹万强 2014 63 047701]

    [16]

    https://en.wikibooks.org/wiki/Signals_and_Systems/Table_of_Fourier_Transforms

    [17]

    Huang C J, Li K, Wu S Y, Zhu X L, Chen X M 2015 J. Materiomics 1 146

  • [1] 郑明, 杨健, 张怡笑, 关朋飞, 程奥, 范贺良. Sm3+掺杂0.94Bi0.5Na0.5TiO3-0.06BaTiO3无机多功能陶瓷的储能行为和光致发光性质.  , 2023, 72(17): 177801. doi: 10.7498/aps.72.20230685
    [2] 梁爱华, 王旭升, 李国荣, 郑嘹赢, 江向平, 胡锐. KxNa1–xNbO3:Pr3+铁电体的光致发光和应力发光性能.  , 2022, 71(16): 167801. doi: 10.7498/aps.71.20220501
    [3] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究.  , 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [4] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算.  , 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [5] 徐然, 冯玉军, 魏晓勇, 徐卓. PbLa(Zr, Sn, Ti)O3反铁电陶瓷在脉冲电场下的极化与相变行为.  , 2020, 69(12): 127710. doi: 10.7498/aps.69.20200209
    [6] 鲁圣国, 李丹丹, 林雄威, 简晓东, 赵小波, 姚英邦, 陶涛, 梁波. 铁电材料中电场对唯象系数和电卡强度的影响.  , 2020, 69(12): 127701. doi: 10.7498/aps.69.20200296
    [7] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究.  , 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [8] 郑伟, 杜安. 外场作用下铁电/铁磁双层膜的极化磁化性质.  , 2019, 68(3): 037501. doi: 10.7498/aps.68.20181879
    [9] 王琴, 王逸伦, 王浩, 孙慧, 毛翔宇, 陈小兵. Pr含量对Bi5Fe0.5Co0.5Ti3O15室温多铁性的影响.  , 2014, 63(14): 147701. doi: 10.7498/aps.63.147701
    [10] 周大雨, 徐进. Si掺杂HfO2薄膜的铁电和反铁电性质.  , 2014, 63(11): 117703. doi: 10.7498/aps.63.117703
    [11] 王伟, 唐佳伟, 王乐天, 陈小兵. 脉冲激光沉积法制备高温压电薄膜0.20 BiInO3-0.80PbTiO3(已撤稿).  , 2013, 62(23): 237701. doi: 10.7498/aps.62.237701
    [12] 甘永超, 曹万强. 铁电相变中极化与介电性的随机场效应.  , 2013, 62(12): 127701. doi: 10.7498/aps.62.127701
    [13] 余罡, 董显林, 王根水, 陈学锋, 曹菲. 37BiScO3-63PbTiO3铁电陶瓷的极化翻转行为研究.  , 2010, 59(12): 8890-8896. doi: 10.7498/aps.59.8890
    [14] 戴中华, 姚熹, 徐卓. 直流偏压对压力诱导反铁电陶瓷去极化性能的影响.  , 2009, 58(5): 3520-3524. doi: 10.7498/aps.58.3520
    [15] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究.  , 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [16] 王飞鹏, 夏钟福, 邱勋林, 沈 军. 聚丙烯孔洞铁电驻极体膜的电极化及其电荷动态特性.  , 2006, 55(7): 3705-3710. doi: 10.7498/aps.55.3705
    [17] 李景德, 李智强, 陆夏莲, 沈 韩. 铁电屏蔽理论.  , 2000, 49(1): 160-163. doi: 10.7498/aps.49.160
    [18] 刘 鹏, 杨同青, 张良莹, 姚 熹. Pb(Zr,Sn,Ti)O3反铁电陶瓷的低温相变扩散与极化弛豫.  , 2000, 49(11): 2300-2303. doi: 10.7498/aps.49.2300
    [19] 张兴元, 陈王丽华, 蔡忠龙. VDF/TrFE铁电共聚物极化分布与退极化过程的激光强度调制方法研究.  , 1999, 48(9): 1760-1766. doi: 10.7498/aps.48.1760
    [20] 钟维烈, 张沛霖, 赵焕绥, 陈焕矗, 陈福生, 宋永远. 铌酸锂钠在低温时的介电铁电和热电性.  , 1988, 37(11): 1837-1842. doi: 10.7498/aps.37.1837
计量
  • 文章访问数:  7686
  • PDF下载量:  323
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-14
  • 修回日期:  2016-05-10
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map