搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外场作用下铁电/铁磁双层膜的极化磁化性质

郑伟 杜安

引用本文:
Citation:

外场作用下铁电/铁磁双层膜的极化磁化性质

郑伟, 杜安

Polarization and magnetization properties of ferroelectric/ ferromagnetic layer films under external field

Zheng Wei, Du An
PDF
HTML
导出引用
  • 建立了铁电/铁磁双层膜模型, 铁电层的电矩用连续标量描述, 而铁磁层的自旋应用经典矢量描述. 利用蒙特卡罗方法模拟了体系的热力学性质和极化、磁化行为. 给出了零场下体系的内能、比热、极化和磁化随温度变化的关系, 并分别研究了体系在外磁场和外电场下的极化和磁化行为. 模拟结果表明, 双层膜体系的内能、比热、极化和磁化性质因层间耦合系数的不同而明显不同, 当界面耦合较弱时, 双层膜表现出各自的热力学性质, 当层间耦合增强到一定程度时, 双层膜耦合为一个整体, 表现出统一的热力学性质. 该双层膜在外场中形成电滞回线和磁滞回线, 并表现出偏置特性, 界面耦合强度和温度影响滞后回线和偏置现象.
    A ferroelectric/ferromagnetic bilayer film model is established. The electric moment of ferroelectric layer is described by continuous scalars, and the spins of ferromagnetic layer are described by classical vectors. The thermodynamic properties, polarization and magnetization behavior are simulated by using Monte Carlo method. The temperature dependence of internal energy, specific heat, polarization and magnetization of the system under zero field are given, and the polarization and magnetization behavior of the system under an external magnetic field and under an external electric field are studied respectively. Simulation results show that the values of internal energy, specific heat, polarization and magnetization of the bilayer films under no action of external field are obviously different from each other due to the fact that their interlayer coupling coefficients are different. When the interfacial coupling is weak (Jem = 0.01), the bilayer films exhibit their own thermodynamic properties. The interaction between ferroelectric layer and ferromagnetic layer increases with the increase of interlayer coupling coefficient. When the interfacial coupling increases to a certain extent (Jem = 0.5), the bilayer film is coupled into a whole and exhibits a uniform thermodynamic behavior. The phase transition temperature of the system increases significantly.In an external magnetic field, the ferromagnetic layer shows hysteresis behavior, and the ferroelectric layer also shows hysteresis behavior. At relatively low temperature (T = 0.08), the hysteresis loop of ferromagnetic layer and ferroelectric layer exhibit bias behavior, the area of hysteresis loop of ferroelectric layer is small when the interfacial coupling is weak. With the increase of interfacial coupling, the phenomenon of bias is more obvious, and the area of hysteresis loop of ferroelectric layer also increases significantly. When the interfacial coupling reaches Jem = 0.75, the polarization behavior of the ferroelectric layer fully responds to the magnetization behavior of the ferromagnetic layer, and neither the bias phenomenon of the ferromagnetic layer nor the bias phenomenon of the ferroelectric layer is still existent. As temperature increases (T = 0.4), the phenomenon of bias disappears even if the interlayer coupling is weak. In an external electric field, the hysteresis behavior of ferromagnetic layer and the hysteresis behavior of ferroelectric layer are similar to those in an external magnetic field. The difference is that the bias phenomenon of the bilayer film still exists for weak interfacial coupling at relatively high temperature (T = 0.4). The theoretical results are in good agreement with the experimental results reported in the literature.
      通信作者: 杜安, duan@mail.neu.edu.cn
      Corresponding author: Du An, duan@mail.neu.edu.cn
    [1]

    Schmid H 1994 Ferroelectrics 162 317Google Scholar

    [2]

    Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123Google Scholar

    [3]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759Google Scholar

    [4]

    Nan T, Hui Y, Rinaldi M, Sun N X 2013 Sci. Rep. 3 1985Google Scholar

    [5]

    O'Handley R C, Huang J K, Bono D C, Simon J 2008 IEEE Sens. J. 8 57Google Scholar

    [6]

    南策文 2015 中国科学: 技术科学 45 339Google Scholar

    Nan C W 2015 Sci. Sin. Tech. 45 339Google Scholar

    [7]

    Zheng H, Wang J, Lofland S E, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde S R, Ogale S B, Bai F, Viehland D, Jia Y, Schlom D G, Wuttig M, Roytburd A, Ramesh R 2004 Science 303 661Google Scholar

    [8]

    Ryu H, Murugavel P, Lee J H, Chae S C, Noh T W 2006 Appl. Phys. Lett. 89 102907Google Scholar

    [9]

    Deng C Y, Zhang Y, Ma J, Lin Y H, Nan C W 2007 J. Appl. Phys. 102 074114Google Scholar

    [10]

    Park J H, Jang H M, Kim H S, Park C G, Lee S G 2008 Appl. Phys. Lett. 92 062908Google Scholar

    [11]

    Zavaliche F, Zheng H, Mohaddesardabili L, Yang S Y, Zhan Q, Shafer P, Reilly E, Chopdekar R, Jia Y, Wright P, Schlom D G, Suzuki Y, Ramesh R 2005 Nano Lett. 5 1793Google Scholar

    [12]

    Greve H, Woltermann E, Quenzer H J, Wagner B, Quandt E 2010 Appl. Phys. Lett. 2010 96 182501Google Scholar

    [13]

    He H C, Zhou J P, Wang J, Nan C W 2006 Appl. Phys. Lett. 89 052904Google Scholar

    [14]

    Leufke P M, Kruk R, Brand R A, Hahn H 2013 Phys. Rev. B 87 094416Google Scholar

    [15]

    Zurbuchen M A, Wu T, Saha S, Mitchell J 2005 Appl. Phys. Lett. 87 232908Google Scholar

    [16]

    李永超, 周航, 潘丹峰, 张浩, 万建国 2015 64 097701Google Scholar

    Li Y C, Zhou H, Pan D F, Zhang H, Wan J G 2015 Acta Phys. Sin. 64 097701Google Scholar

    [17]

    王建元, 白健英, 罗炳成, 王拴虎, 金克新, 陈长乐 2018 67 017701Google Scholar

    Wang J Y, Bai J Y, Luo B C, Wang S H, Jin K X, Chen C L 2018 Acta Phys. Sin. 67 017701Google Scholar

    [18]

    Ramana E V, Zavasnik J, Graca M P F, Valente M A 2016 J. Appl. Phys. 120 074108Google Scholar

    [19]

    Liu G, Nan C W, Xu Z K, Chen H 2005 J. Phys. D: Appl. Phys. 38 2321Google Scholar

    [20]

    Duan C G, Velev J P, Sabirianov R F, Zhu Z, Jaswal S S, Tsymbal E Y 2008 Phys. Rev. Lett. 101 137201Google Scholar

    [21]

    Nan C W, Liu G, Lin Y H, Chen H 2005 Phys. Rev. Lett. 94 197203Google Scholar

    [22]

    Sukhov A, Jia C L, Horley P P, Berakdar J 2010 J. Phys.: Condens. Matter 22 352201Google Scholar

  • 图 1  FE/FM双层膜结构示意图

    Fig. 1.  Schematic of the ferroelectric/ferromagnetic double layer film.

    图 2  自发极化和磁化随温度变化曲线

    Fig. 2.  Temperature dependencies of the spontaneous polarization and spontaneous magnetization of the system.

    图 3  (a)内能和(b)比热随温度的变化

    Fig. 3.  Temperature dependencies of (a) energy and (b) specific heat.

    图 4  双层膜极化率(a)和磁化率(b)随温度的变化

    Fig. 4.  Temperature dependencies of (a) electric susceptibility and (b) magnetic susceptibility.

    图 5  双层膜在外磁场中的滞后回线($T = 0.08$) (a) ${J_{{\rm{em}}}} = 0.01$, $0.1$, $0.5$; (b) ${J_{{\rm{em}}}} = 1.0$

    Fig. 5.  Polarization and magnetization loops in external magnetic field at $T = 0.08$: (a) ${J_{{\rm{em}}}} = 0.01$, $0.1$, $0.5$; (b) ${J_{{\rm{em}}}} = 1.0$.

    图 6  双层膜在外磁场中的滞后回线($T = 0.4$, ${J_{{\rm{em}}}} = 0.01$, $0.1$, $0.3$, $0.5$)

    Fig. 6.  Polarization and magnetization loops in external magnetic field at $T = 0.4$, ${J_{{\rm{em}}}} = 0.01$, $0.1$, $0.3$, $0.5$.

    图 7  双层膜在外电场中的滞后回线 (a) $T = 0.08$, ${J_{{\rm{em}}}} = 0.01$, $0.1$; (b) $T = 0.08$, ${J_{{\rm{em}}}} = 0.5$, $1.0$; (c) $T = 0.4$, ${J_{{\rm{em}}}} = 0.01$, $0.1$; (d) $T = 0.4$, ${J_{{\rm{em}}}} = 0.3$, $0.5$

    Fig. 7.  Magnetization and polarization loops in external electric field: (a) $T = 0.08$, ${J_{{\rm{em}}}} = 0.01$, $0.1$; (b) $T = 0.08$, ${J_{{\rm{em}}}} = 0.5$, $1.0$; (c) $T = 0.4$, ${J_{{\rm{em}}}} = 0.01$, $0.1$; (d) $T = 0.4$, ${J_{{\rm{em}}}} = 0.3$, $0.5$.

    Baidu
  • [1]

    Schmid H 1994 Ferroelectrics 162 317Google Scholar

    [2]

    Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123Google Scholar

    [3]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759Google Scholar

    [4]

    Nan T, Hui Y, Rinaldi M, Sun N X 2013 Sci. Rep. 3 1985Google Scholar

    [5]

    O'Handley R C, Huang J K, Bono D C, Simon J 2008 IEEE Sens. J. 8 57Google Scholar

    [6]

    南策文 2015 中国科学: 技术科学 45 339Google Scholar

    Nan C W 2015 Sci. Sin. Tech. 45 339Google Scholar

    [7]

    Zheng H, Wang J, Lofland S E, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde S R, Ogale S B, Bai F, Viehland D, Jia Y, Schlom D G, Wuttig M, Roytburd A, Ramesh R 2004 Science 303 661Google Scholar

    [8]

    Ryu H, Murugavel P, Lee J H, Chae S C, Noh T W 2006 Appl. Phys. Lett. 89 102907Google Scholar

    [9]

    Deng C Y, Zhang Y, Ma J, Lin Y H, Nan C W 2007 J. Appl. Phys. 102 074114Google Scholar

    [10]

    Park J H, Jang H M, Kim H S, Park C G, Lee S G 2008 Appl. Phys. Lett. 92 062908Google Scholar

    [11]

    Zavaliche F, Zheng H, Mohaddesardabili L, Yang S Y, Zhan Q, Shafer P, Reilly E, Chopdekar R, Jia Y, Wright P, Schlom D G, Suzuki Y, Ramesh R 2005 Nano Lett. 5 1793Google Scholar

    [12]

    Greve H, Woltermann E, Quenzer H J, Wagner B, Quandt E 2010 Appl. Phys. Lett. 2010 96 182501Google Scholar

    [13]

    He H C, Zhou J P, Wang J, Nan C W 2006 Appl. Phys. Lett. 89 052904Google Scholar

    [14]

    Leufke P M, Kruk R, Brand R A, Hahn H 2013 Phys. Rev. B 87 094416Google Scholar

    [15]

    Zurbuchen M A, Wu T, Saha S, Mitchell J 2005 Appl. Phys. Lett. 87 232908Google Scholar

    [16]

    李永超, 周航, 潘丹峰, 张浩, 万建国 2015 64 097701Google Scholar

    Li Y C, Zhou H, Pan D F, Zhang H, Wan J G 2015 Acta Phys. Sin. 64 097701Google Scholar

    [17]

    王建元, 白健英, 罗炳成, 王拴虎, 金克新, 陈长乐 2018 67 017701Google Scholar

    Wang J Y, Bai J Y, Luo B C, Wang S H, Jin K X, Chen C L 2018 Acta Phys. Sin. 67 017701Google Scholar

    [18]

    Ramana E V, Zavasnik J, Graca M P F, Valente M A 2016 J. Appl. Phys. 120 074108Google Scholar

    [19]

    Liu G, Nan C W, Xu Z K, Chen H 2005 J. Phys. D: Appl. Phys. 38 2321Google Scholar

    [20]

    Duan C G, Velev J P, Sabirianov R F, Zhu Z, Jaswal S S, Tsymbal E Y 2008 Phys. Rev. Lett. 101 137201Google Scholar

    [21]

    Nan C W, Liu G, Lin Y H, Chen H 2005 Phys. Rev. Lett. 94 197203Google Scholar

    [22]

    Sukhov A, Jia C L, Horley P P, Berakdar J 2010 J. Phys.: Condens. Matter 22 352201Google Scholar

  • [1] 李再东, 南雪萌, 屈川, 刘伍明. 飞秒尺度下的惯性磁化强度动力学.  , 2023, 72(10): 107502. doi: 10.7498/aps.72.20230345
    [2] 王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌. 自旋轨道矩协助自旋转移矩驱动磁化强度翻转.  , 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [3] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算.  , 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [4] 李再东, 郭奇奇. 铁磁纳米线中磁化强度的磁怪波.  , 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [5] 曹万强, 刘培朝, 陈勇, 潘瑞琨, 祁亚军. 铁电体中偶极子的滞后对剩余极化的影响.  , 2016, 65(13): 137701. doi: 10.7498/aps.65.137701
    [6] 李晓杰, 刘中强, 王春阳, 徐玉良, 孔祥木. 双模随机晶场对纳米管上Blume-Capel模型磁化强度和相变的影响.  , 2015, 64(24): 247501. doi: 10.7498/aps.64.247501
    [7] 邵宗乾, 陈金望, 李玉奇, 潘孝胤. 限制在一维谐振势下的三维自由电子气的一些热力学性质.  , 2014, 63(24): 240502. doi: 10.7498/aps.63.240502
    [8] 甘永超, 曹万强. 铁电相变中极化与介电性的随机场效应.  , 2013, 62(12): 127701. doi: 10.7498/aps.62.127701
    [9] 成泰民, 葛崇员, 孙树生, 贾维烨, 李林, 朱林, 马琰铭. 自旋为1/2的XY模型亚铁磁棱型链的物性和有序-无序竞争.  , 2012, 61(18): 187502. doi: 10.7498/aps.61.187502
    [10] 周宗立, 章国顺, 娄平. 相互作用突然开启后的反铁磁海森伯模型.  , 2011, 60(3): 031101. doi: 10.7498/aps.60.031101
    [11] 高鹏, 殷海荣, 宫玉彬, 杨中海, 魏彦玉. 考虑非常数自旋扭矩时LLS方程的微扰解.  , 2010, 59(5): 3504-3508. doi: 10.7498/aps.59.3504
    [12] 陈杰, 鲁习文. 舰船感应磁场预测的一种新方法.  , 2010, 59(1): 239-245. doi: 10.7498/aps.59.239
    [13] 张继业, 骆 军, 梁敬魁, 纪丽娜, 刘延辉, 李静波, 饶光辉. 赝二元固溶体TbGa1-xGex(0≤x≤0.4)的结构与磁性.  , 2008, 57(10): 6482-6487. doi: 10.7498/aps.57.6482
    [14] 王泽温, 介万奇. 稀磁半导体Hg0.89Mn0.11Te磁化强度及磁化率的研究.  , 2007, 56(2): 1141-1145. doi: 10.7498/aps.56.1141
    [15] 肖春涛, 曹先胜. La0.67Pb0.33MnO3的Preisach分析.  , 2004, 53(7): 2347-2351. doi: 10.7498/aps.53.2347
    [16] 周仕明, 李合印, 宋金涛. Co-Ni/FeMn双层膜中磁化强度对交换偏置的影响.  , 2002, 51(4): 917-921. doi: 10.7498/aps.51.917
    [17] 王维, 张锡娟, 杨翠红, 成海英. 强磁场下Er2Ga5O12的磁晶各向异性.  , 2002, 51(12): 2846-2848. doi: 10.7498/aps.51.2846
    [18] 沈保根, 詹文山, 赵见高, 陈金昌. 非晶态Fe87-xSixB13合金的磁化强度、电阻与温度的关系.  , 1985, 34(8): 1009-1016. doi: 10.7498/aps.34.1009
    [19] 罗河烈, 文亦汀, 孙克, 冯远冰, 黄锡成. 表面效应对γ-Fe2O3微粉饱和磁化强度的影响.  , 1983, 32(6): 812-818. doi: 10.7498/aps.32.812
    [20] 何怡贞, 徐升美. 有自吸收现象时谱线强度与物质浓度的关系.  , 1958, 14(1): 54-63. doi: 10.7498/aps.14.54
计量
  • 文章访问数:  6632
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-20
  • 修回日期:  2018-11-28
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回
Baidu
map