搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于准弹性中子散射谱分析水化硅酸钙(C-S-H)中受限水的动态

邓沛娜 易洲 张丽丽 李华

引用本文:
Citation:

基于准弹性中子散射谱分析水化硅酸钙(C-S-H)中受限水的动态

邓沛娜, 易洲, 张丽丽, 李华

Analysis of the dynamics of water confined in hydrated calcium silica(C-S-H) based on the quasi-elastic neutron scattering spectra

Deng Pei-Na, Yi Zhou, Zhang Li-Li, Li Hua
PDF
导出引用
  • 研究水化硅酸钙(C-S-H)中受限水动态的一种重要手段是准弹性中子散射(quasi-elastic neutron scattering, QENS)实验. C-S-H样品的QENS谱数据可通过跳跃扩散和转动扩散模型进行分析拟合, 进而导出C-S-H样品微纳孔中水动态的相关物理参数: 不动水指数C、转动扩散系数Dr、均方位移 u2 、自扩散系数Dt及平均停留时间0. 本文对水与水泥质量比为30%的C-S-H样品, 测量温度为230-280 K的QENS谱进行了分析, 得到的拟合参数可定量描述C-S-H样品内不同尺度的微纳孔中受限水随温度变化的动态过程. 转动扩散系数Dr随散射矢量Q的变化可知, Q值较大时, 水分子的转动对QENS谱影响较大. 均方位移 u2 随Q值的不同而变化, 其拟合值可区分C-S-H样品中的不动水、强受限水和受限水. 在Q较小时, Dt 和0 的拟合值随温度而变化, 并分别在230和240 K突然增大, 由此揭示温度为230-240 K 时, C-S-H 样品中受限水分子的动态特性发生了转变.
    Cement is a widely used construction material in the world. Calcium-silicate-hydrate (C-S-H) is the main component of aged cement (concrete). The quality and durability of concrete are strongly affected by the dynamics of water confined in it. Dynamics of the confined water can be studied experimentally by the quasi-elastic neutron scattering (QENS). In this paper, the jump-diffusion and rotation-diffusion model (JRM) is used to fit the QENS spectra of C-S-H paste samples at different measured temperatures for the whole scattering vector Q-range from 0.3 to 1.7 -1. Five important parameters are extracted to describe the dynamics of water confined in C-S-H samples: the index of immobile water C, the rotational diffusion constant Dr, the mean square displacement (MSD) u2 , the self-diffusion coefficient Dt, and the average residence time between jumps 0. Here, all the C-S-H samples, each with a 30% weight ratio of water to cement, are measured at temperatures ranging from 230 to 280 K. The fitted parameters can quantitatively describe the dynamics of water confined on different scales of C-S-H gel pores. The results show that the QENS spectra are fitted very well not only for small Q (Q 1 -1) but also for large Q (Q 1 -1). The obtained rotational diffusion constant is Q dependent. Thus the contribution of the water molecule rotation to a QENS spectrum increases with the value of Q increasing. The mean square displacement (MSD) u2 decreases with the increase of Q, which can be used to distinguish the confined water, ultra-confined water, and bound water contained in C-S-H samples. When Q is small, the fitted Dt and 0 vary with the measured temperature. Dt has a maximum value at 230 K and 0 has a peak at 240 K. These indicate that the dynamics of the confined water shows different behaviors at 230 K and 240 K. There are crossover or critical phenomena for water confined in C-S-H sample at low temperature.
      Corresponding author: Li Hua, tlihua@jnu.edu.cn
    [1]

    Li H, Fratini E, Chiang W S, Baglioni P, Mamonto E, Chen S H 2012 Phys. Rev. E 86 061505

    [2]

    Bordallo H N, Aldridge L P, Desmedt A 2006 J. Phys. Chem. B 110 17966

    [3]

    Ridi F, Luciani P, Fratini E, Baglioni P 2009 J. Phys. Chem. B 113 3080

    [4]

    Ridi F, Dei L, Fratini E, Chen S H, Baglioni P 2003 J. Phys. Chem. B 107 1056

    [5]

    Nestle N, Galvosas P, Krger J 2007 Cem. Concr. Res. 37 398

    [6]

    Skinner L B, Chae S R, Benmore C J, Wenk H R, Monteiro P J M 2010 Phys. Rev. Lett. 104 195502

    [7]

    Eckold G, Schober H, Nager S E 2010 Studying kinetics with Neutrons-Prospects for Time-Resolve Neutron Scattering (London: Springer) pp19-75

    [8]

    Eisenberg D, Kauzmann W 1969 The Structure and Properties of Water (New York: Oxford University Press) pp1-296

    [9]

    Debenedetti P G 2003 J. Phys.: Condens. Mattter 15 R1669

    [10]

    Bergman R, Swenson J 2000 Nature 403 283

    [11]

    Qomi M J A, Bauchy M, Ulm F J, Pellenq R J M 2014 J. Chem. Phys. 140 054515

    [12]

    Fujii K, Kondo W 1983 J. Am. Ceram. Soc. 66 C-220

    [13]

    Taylor H F W 1986 J. Am. Ceram. Soc. 69 464

    [14]

    Jennings H M 2008 Cem. Coner. Res. 38 275

    [15]

    Li H, zhang L L, Yi Z, Fratini E, Baglioni P, Chen S H 2015 J. Colloid Interface Sci. 45 2

    [16]

    Fratini E, Chen S H, Baglioni P, Bellissent-Funel M 2002 J. Phys. Chem. B 106 158

    [17]

    Faraone A, Fratini E, Baglioni P, Chen S H 2004 J. Chem. Phys. 121 3212

    [18]

    Yi Z, Zhang L L, Li H 2015 Acta Phys. Sin. 64 056101 (in Chinese) [易洲, 张丽丽, 李华 2015 64 056101]

    [19]

    Mamontov E, Herwig K W 2011 Rev. Sci. Instrum. 82 085109

    [20]

    Bee M 1988 Quasi-elastic Neutron Scattering (Bristol and Philadelphia: Adam Hilger) pp1-437

    [21]

    Sears V F 1966 Can. J. Phys. 44 1299

    [22]

    Singwi K S, Sjlander A 1960 Phys. Rev. 119 863

    [23]

    Li H, Zhang L L, Yi Z 2014 Nuclear Techniques 37 020604 (in Chinese) [李华, 张丽丽, 易洲 2014 核技术 37 020604]

  • [1]

    Li H, Fratini E, Chiang W S, Baglioni P, Mamonto E, Chen S H 2012 Phys. Rev. E 86 061505

    [2]

    Bordallo H N, Aldridge L P, Desmedt A 2006 J. Phys. Chem. B 110 17966

    [3]

    Ridi F, Luciani P, Fratini E, Baglioni P 2009 J. Phys. Chem. B 113 3080

    [4]

    Ridi F, Dei L, Fratini E, Chen S H, Baglioni P 2003 J. Phys. Chem. B 107 1056

    [5]

    Nestle N, Galvosas P, Krger J 2007 Cem. Concr. Res. 37 398

    [6]

    Skinner L B, Chae S R, Benmore C J, Wenk H R, Monteiro P J M 2010 Phys. Rev. Lett. 104 195502

    [7]

    Eckold G, Schober H, Nager S E 2010 Studying kinetics with Neutrons-Prospects for Time-Resolve Neutron Scattering (London: Springer) pp19-75

    [8]

    Eisenberg D, Kauzmann W 1969 The Structure and Properties of Water (New York: Oxford University Press) pp1-296

    [9]

    Debenedetti P G 2003 J. Phys.: Condens. Mattter 15 R1669

    [10]

    Bergman R, Swenson J 2000 Nature 403 283

    [11]

    Qomi M J A, Bauchy M, Ulm F J, Pellenq R J M 2014 J. Chem. Phys. 140 054515

    [12]

    Fujii K, Kondo W 1983 J. Am. Ceram. Soc. 66 C-220

    [13]

    Taylor H F W 1986 J. Am. Ceram. Soc. 69 464

    [14]

    Jennings H M 2008 Cem. Coner. Res. 38 275

    [15]

    Li H, zhang L L, Yi Z, Fratini E, Baglioni P, Chen S H 2015 J. Colloid Interface Sci. 45 2

    [16]

    Fratini E, Chen S H, Baglioni P, Bellissent-Funel M 2002 J. Phys. Chem. B 106 158

    [17]

    Faraone A, Fratini E, Baglioni P, Chen S H 2004 J. Chem. Phys. 121 3212

    [18]

    Yi Z, Zhang L L, Li H 2015 Acta Phys. Sin. 64 056101 (in Chinese) [易洲, 张丽丽, 李华 2015 64 056101]

    [19]

    Mamontov E, Herwig K W 2011 Rev. Sci. Instrum. 82 085109

    [20]

    Bee M 1988 Quasi-elastic Neutron Scattering (Bristol and Philadelphia: Adam Hilger) pp1-437

    [21]

    Sears V F 1966 Can. J. Phys. 44 1299

    [22]

    Singwi K S, Sjlander A 1960 Phys. Rev. 119 863

    [23]

    Li H, Zhang L L, Yi Z 2014 Nuclear Techniques 37 020604 (in Chinese) [李华, 张丽丽, 易洲 2014 核技术 37 020604]

  • [1] 梁建, 王华光, 张泽新. 粗糙和光滑椭球胶体的受限扩散.  , 2024, 73(14): 148202. doi: 10.7498/aps.73.20240559
    [2] 孙志伟, 何燕, 唐元政. 单壁碳纳米管受限空间内水的分布.  , 2021, 70(6): 060201. doi: 10.7498/aps.70.20201523
    [3] 方海平. 微观尺度下的水:从准一维、二维受限空间到生物以及材料表面.  , 2016, 65(18): 186101. doi: 10.7498/aps.65.186101
    [4] 唐彬, 曹超, 尹伟, 孙勇, 刘斌. 样品转动方式对中子全息成像结果的影响.  , 2015, 64(24): 242801. doi: 10.7498/aps.64.242801
    [5] 易洲, 张丽丽, 李华. 水泥老化过程中水动态的准弹性中子散射(QENS)谱分析.  , 2015, 64(5): 056101. doi: 10.7498/aps.64.056101
    [6] 王明, 段芳莉. 界面氢键对受限水结构和动态特性的影响.  , 2015, 64(21): 218201. doi: 10.7498/aps.64.218201
    [7] 李晨璞, 韩英荣, 展永, 胡金江, 张礼刚, 曲蛟. 肌球蛋白Ⅵ分子马达周期势场下的弹性扩散模型.  , 2013, 62(23): 230501. doi: 10.7498/aps.62.230501
    [8] 李占龙, 王一丁, 周密, 门志伟, 孙成林, 里佐威. 水的低频受激拉曼散射.  , 2012, 61(6): 064217. doi: 10.7498/aps.61.064217
    [9] 张玉龙, 姚 忻, 张 宏, 金燕苹. YBCO熔融织构准单晶中的进氧和脱氧扩散研究.  , 2005, 54(7): 3380-3385. doi: 10.7498/aps.54.3380
    [10] 张海燕. 多分量胶体悬浮系统转动扩散张量的反射理论.  , 2002, 51(2): 449-455. doi: 10.7498/aps.51.449
    [11] 李景德, 邓人忠, 陈敏, 郑凤. 绝缘液体中空间电荷的扩散和介电谱.  , 1997, 46(1): 155-161. doi: 10.7498/aps.46.155
    [12] 王刚, 杨国权, 管荻华, 姜莉, 帕斯夸利·毛罗, 皮斯托亚·詹弗兰科, 解思深. 阻抗谱法确定扩散系数.  , 1995, 44(12): 1964-1968. doi: 10.7498/aps.44.1964
    [13] 孙宗琦, 蒋方忻. 间隙原子非线性应力感生扩散的简化弹性偶极子模型.  , 1989, 38(10): 1679-1686. doi: 10.7498/aps.38.1679
    [14] 陶昉, 张泰永, 牛世文, 勾成, 施仲坚, 林泉. 中子非弹性散射对Bi12GeO20和Bi12SiO20旋声性的研究.  , 1986, 35(2): 196-202. doi: 10.7498/aps.35.196
    [15] 曹明中, 王福元, 汪根时, 宋德瑛, 陈桂英, 阮景辉. 金属氢化物LaNi4.5Mn0.5Hx的热中子非弹性散射谱.  , 1985, 34(5): 689-693. doi: 10.7498/aps.34.689
    [16] 阮景辉, 成之绪, 陈桂英. 金属氢化物(AlH3)n的热中子非弹性散射谱.  , 1981, 30(4): 538-541. doi: 10.7498/aps.30.538
    [17] 陈桂英, 成之绪, 吴享南, 阮景辉. 钯氢的热中子非弹性散射.  , 1980, 29(2): 257-259. doi: 10.7498/aps.29.257
    [18] 李铁城, 许政一. Debye-Hückel方程描写的离子导体对光、中子和电子束的准弹性散射.  , 1978, 27(2): 175-180. doi: 10.7498/aps.27.175
    [19] 高树濬, 钱知强. 均匀合金自扩散的准化学模型.  , 1965, 21(3): 622-629. doi: 10.7498/aps.21.622
    [20] 方励之, 顾世杰. 有缺陷铁磁体的中子非弹性散射.  , 1963, 19(10): 673-681. doi: 10.7498/aps.19.673
计量
  • 文章访问数:  6871
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-05
  • 修回日期:  2016-03-09
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map