搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全介质光栅在太赫兹波段的光调控特性

崔彬 杨玉平 马品 杨雪莹 马俪文

引用本文:
Citation:

全介质光栅在太赫兹波段的光调控特性

崔彬, 杨玉平, 马品, 杨雪莹, 马俪文

Optical modulation characteristics of all-dielectric grating at terahertz frequencies

Cui Bin, Yang Yu-Ping, Ma Pin, Yang Xue-Ying, Ma Li-Wen
PDF
导出引用
  • 采用激光直写技术在100 m厚的Si衬底上制备了全介质光栅结构, 利用近红外光抽运-太赫兹探测(near infrared pump-Terahertz probe)技术对该全介质光栅在THz波段的光谱响应及其光调控特性进行了测试, 最后结合电磁仿真结果, 对米谐振(Mie resonance)的形成机理和光调控机理进行了解释并对调控光作用下全介质光栅的电导率数值进行了估算. 研究结果表明: 在光栅与THz偏振垂直的情况下, 该全介质光栅在0-1.0 THz范围内有3个典型的米谐振峰且谐振模式各不相同; 随着调控光功率的增加, 3个谐振峰的谐振强度出现了不同程度的减弱, 其中第一个谐振峰的光调控幅度达到50%以上, 调控光作用下米谐振强度的减弱是由于光生载流子对入射THz波的吸收和散射导致了介质光栅内部感生电磁场减弱引起的. 上述工作对全介质超材料在THz波段的共振特性研究和相关光调控器件的研制具有重要参考价值.
    In recent years, metamaterials (MMs) have been widely investigated for their exotic electromagnetic characteristics which cannot be achieved in nature. However, one of the main limitations in traditional metallic-film MMs is a high level of radiation loss in metal and insertion loss of the high-permittivity or thick substrate. Fortunately, all-dielectric MMs with high refractive-index dielectric structures show significantly less material loss than their metallic counterparts. In this paper, an all-dielectric grating is fabricated on a 100-m-thick silicon wafer by using direct-laser-writing technique, and the properties of its Mie resonances are investigated by THz time-domain spectroscopy. Then we measure the spectral response of the all-dielectric grating under the optical modulation by a near-infrared pump-THz probe method. The modulation light source is an 808 nm continuous semiconductor laser with a maximum power (10 W). To give an insight into the underlying mechanisms of the Mie-type resonance effects on the arrayed, silicon pillars, the transmission of the all-dielectric grating is investigated numerically by the finite-element simulations through using CST Microwave Studio. In our experiment, the incident THz magnetic field is along the grating lines. The research results show that three typical Mie resonances are excited from 0 to 1 THz in the all-dielectric structure, and all the three resonant modes are different in the distributions of electric field and magnetic field. Furthermore, it is found that the resonance intensities of these three resonance peaks appear to be weakened variously with the increase of the optical power, and the first resonant peak modulation amplitude maximally reaches more than 50%. Combining the simulation results, we prove that the decrease of Mie resonance intensity under photo-excitation is caused by the absorption and the scattering of the incident THz wave by photo-generated carriers. Besides, we estimate the conductivity values of the all-dielectric grating under different optical excitations and find that the conductivity values reach 1000 S/m and 1500 S/m corresponding to 5 W and 10 W optical excitation, respectively. The estimated conductivity data will play an important role in the prospective optical modulation simulation. All the results mentioned above will provide an important reference for researches on the resonance properties of the all-dielectric metamaterials and the development of related functional devices.
      通信作者: 杨玉平, ypyang_cun@126.com
    • 基金项目: 国家自然科学基金(批准号: 11574408, 11204191, 11374378)、国家重大科学仪器设备开发专项(批准号: 2012YQ14000508)、留学人员科技活动择优资助项目和大学生创新性试验计划(批准号: GCCX2015110005, URTP2015110036)资助的课题.
      Corresponding author: Yang Yu-Ping, ypyang_cun@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574408, 11204191, 11374378), the Special Funds of the Major Scientific Instruments Equipment Development of China (Grant No. 2012YQ14000508), the Technology Foundation for Selected Overseas Chinese Scholar, and the Undergraduate Innovative Test Program, China (Grant Nos. GCCX2015110005, URTP2015110036).
    [1]

    Wu X J, Quan B G, Pan X C, Xu X L, Lu X C, Gu C Z, Wang L 2013 Biosens. Bioelectron. 42 626

    [2]

    O'Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W 2008 Opt. Express 16 1786

    [3]

    Zhang Y P, Li T T, L H H, Huang X Y, Zhang H Y 2015 Acta Phys. Sin. 64 117801 (in Chinese) [张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云 2015 64 117801]

    [4]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [5]

    Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J G, Zhang W L 2012 Nat. Commun. 3 1151

    [6]

    Ding C F, Zhang Y T, Yao J Q, Sun C L, Xu D G, Zhang G Z 2014 Chin. Phys. B 23 124203

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Li L Y, Wang J, Du H L, Wang J F, Qu S B 2015 Chin. Phys. B 24 064201

    [9]

    Xiao S, Drachev V P, Kildishev A V, Ni X, Chettiar U K, Yuan H K, Shalaev V M 2010 Nature 466 735

    [10]

    Yang Y P, Singh R, Zhang W L 2014 Chin. Phys. B 23 128702

    [11]

    Vynck K, Felbacq D, Centeno E, Cãbuz A I, Cassagne D, Guizal B 2009 Phys. Rev. Lett. 102 133901

    [12]

    Zhao Q, Zhou J, Zhang F L, Lippens D 2009 Mater. Today 12 60

    [13]

    Bi K, Guo Y S, Liu X M, Zhao Q, Xiao J H, Lei M, Zhou J 2014 Sci. Rep. 4 7001

    [14]

    Peng L, Ran L, Chen H, Zhang H, Kong J A, Grzegorczyk T M 2007 Phys. Rev. Lett. 98 157403

    [15]

    Zhang J, Macdonald K F, Zheludev N I 2013 Opt. Express 21 26721

    [16]

    Shi L, Harris J T, Fenollosa R, Rodriguez I, Lu X, Korgel B A, Meseguer F 2013 Nat. Commun. 4 1904

    [17]

    O'Brien S, Pendry J B 2002 Condens. Matter 14 6383

    [18]

    Yang Y, Kravchenko I I, Briggs D P, Valentine J 2014 Nat. Commun. 5 5753

    [19]

    Narayana S, Sato Y 2012 Adv. Mater. 24 71

    [20]

    Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P, Valentine J 2013 Nat. Photon. 7 791

    [21]

    Slovick B, Yu Z G, Berding M, Krishnamurthy S 2013 Phys. Rev. B 8 165116

    [22]

    Rahm M, Li J S, Padilla W J 2013 J. Infr. Milli. Terahz. Waves 34 1

    [23]

    Li Q, Tian Z, Zhang X Q, Singh R, Du L L, Gu J Q, Han J G, Zhang W L 2015 Nat. Commun. 6 7082

    [24]

    Moitra P, Slovick B A, Yu Z G, Krishnamurthy S, Valentine J 2014 Appl. Phys. Lett. 104 171102

    [25]

    Yang Y P, Cui B, Geng Z X, Feng S 2015 Appl. Phys. Lett. 106 111106

  • [1]

    Wu X J, Quan B G, Pan X C, Xu X L, Lu X C, Gu C Z, Wang L 2013 Biosens. Bioelectron. 42 626

    [2]

    O'Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W 2008 Opt. Express 16 1786

    [3]

    Zhang Y P, Li T T, L H H, Huang X Y, Zhang H Y 2015 Acta Phys. Sin. 64 117801 (in Chinese) [张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云 2015 64 117801]

    [4]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [5]

    Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J G, Zhang W L 2012 Nat. Commun. 3 1151

    [6]

    Ding C F, Zhang Y T, Yao J Q, Sun C L, Xu D G, Zhang G Z 2014 Chin. Phys. B 23 124203

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Li L Y, Wang J, Du H L, Wang J F, Qu S B 2015 Chin. Phys. B 24 064201

    [9]

    Xiao S, Drachev V P, Kildishev A V, Ni X, Chettiar U K, Yuan H K, Shalaev V M 2010 Nature 466 735

    [10]

    Yang Y P, Singh R, Zhang W L 2014 Chin. Phys. B 23 128702

    [11]

    Vynck K, Felbacq D, Centeno E, Cãbuz A I, Cassagne D, Guizal B 2009 Phys. Rev. Lett. 102 133901

    [12]

    Zhao Q, Zhou J, Zhang F L, Lippens D 2009 Mater. Today 12 60

    [13]

    Bi K, Guo Y S, Liu X M, Zhao Q, Xiao J H, Lei M, Zhou J 2014 Sci. Rep. 4 7001

    [14]

    Peng L, Ran L, Chen H, Zhang H, Kong J A, Grzegorczyk T M 2007 Phys. Rev. Lett. 98 157403

    [15]

    Zhang J, Macdonald K F, Zheludev N I 2013 Opt. Express 21 26721

    [16]

    Shi L, Harris J T, Fenollosa R, Rodriguez I, Lu X, Korgel B A, Meseguer F 2013 Nat. Commun. 4 1904

    [17]

    O'Brien S, Pendry J B 2002 Condens. Matter 14 6383

    [18]

    Yang Y, Kravchenko I I, Briggs D P, Valentine J 2014 Nat. Commun. 5 5753

    [19]

    Narayana S, Sato Y 2012 Adv. Mater. 24 71

    [20]

    Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P, Valentine J 2013 Nat. Photon. 7 791

    [21]

    Slovick B, Yu Z G, Berding M, Krishnamurthy S 2013 Phys. Rev. B 8 165116

    [22]

    Rahm M, Li J S, Padilla W J 2013 J. Infr. Milli. Terahz. Waves 34 1

    [23]

    Li Q, Tian Z, Zhang X Q, Singh R, Du L L, Gu J Q, Han J G, Zhang W L 2015 Nat. Commun. 6 7082

    [24]

    Moitra P, Slovick B A, Yu Z G, Krishnamurthy S, Valentine J 2014 Appl. Phys. Lett. 104 171102

    [25]

    Yang Y P, Cui B, Geng Z X, Feng S 2015 Appl. Phys. Lett. 106 111106

  • [1] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面.  , 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究.  , 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [3] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线.  , 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [4] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性.  , 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [5] 朱智, 闫韶健, 段铜川, 赵妍, 孙庭钰, 李阳梅. 太赫兹电磁波调控甲烷水合物分解.  , 2021, 70(24): 248705. doi: 10.7498/aps.70.20211779
    [6] 宋克超, 霍帅楠, 涂冬明, 侯新富, 吴晓静, 王明伟. 二维黑磷对太赫兹波调控特性的理论研究.  , 2020, 69(17): 174205. doi: 10.7498/aps.69.20200105
    [7] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用.  , 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [8] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [9] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器.  , 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [10] 陶泽华, 董海明, 段益峰. 太赫兹辐射场下的石墨烯光生载流子和光子发射.  , 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [11] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控.  , 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [12] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元.  , 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [13] 王长, 曹俊诚. 太赫兹场和倾斜磁场对超晶格电子动力学特性调控规律研究.  , 2015, 64(9): 090502. doi: 10.7498/aps.64.090502
    [14] 张会云, 刘蒙, 张玉萍, 何志红, 申端龙, 吴志心, 尹贻恒, 李德华. 基于振动弛豫理论提高光抽运太赫兹激光器输出功率的研究.  , 2014, 63(1): 010702. doi: 10.7498/aps.63.010702
    [15] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究.  , 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [16] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究.  , 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [17] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究.  , 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [18] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化.  , 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [19] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究.  , 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [20] 李文平, 张雅鑫, 刘盛纲, 刘大刚. 特殊三反射镜太赫兹波段准光腔回旋管的动力学理论.  , 2008, 57(5): 2875-2881. doi: 10.7498/aps.57.2875
计量
  • 文章访问数:  6299
  • PDF下载量:  766
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-13
  • 修回日期:  2015-12-03
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map