搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通道调制型偏振成像系统的波段宽度限制判据

张宁 朱京平 宗康 李浩 强帆 侯洵

引用本文:
Citation:

通道调制型偏振成像系统的波段宽度限制判据

张宁, 朱京平, 宗康, 李浩, 强帆, 侯洵

Imaging spectral bandwidth criterion equation of channeled modulated polarization imaging system

Zhang Ning, Zhu Jing-Ping, Zong Kang, Li Hao, Qiang Fan, Hou Xun
PDF
导出引用
  • 通道调制型偏振成像技术是一种体积紧凑、空间分辨率高且能够实时获取全偏振信息的新型偏振成像探测技术. 但该技术目前只能实现准单色光的全偏振探测, 严重制约了其实用化. 本文首先对宽带光通道调制型偏振成像出现混叠现象的原因进行了分析, 得出载波频率是限制波段宽度的主要因素. 据此在空间频谱域上分析并推导了通道调制型偏振成像系统的光谱宽度限制判据公式, 同时通过模型仿真得到了系统的极限有效光谱范围, 与理论推导公式结果进行了对比分析, 验证了判据的准确性. 基于该判据可预测给定通道调制型偏振成像系统的有效工作波段, 同时还可为扩展系统波段宽度提供理论支撑.
    Channeled modulated polarimetry imaging (CMPI) is a novel detection technology which can acquire full-Stokes parameters of each pixel of the sensor. Compared with the other imaging polarimetric technologies, CMPI has advantages in compact, high spatial resolution and acquiring full-Stokes information simultaneously. It has been widely used in remote sensing, military reconnaissance and biomedical diagnosis. However CMPI can only be used for quasi-monochromatic light during full-Stokes imaging, which leads to low signal-to-noise ratio in many cases especially under the condition of low light. Expanding the imaging spectral bandwidth of the CMPI is of great urgency. In order to expand the bandwidth, the limitation factors and conditions of the imaging bandwidth should be clearly understood first. So an imaging bandwidth criterion is deduced in this paper for the researchers to estimate the limitation bandwidth of the CMPI. We analyze the factors which might affect the fringe visibility based on a Savart plate (SP) CMPI and obtain the conclusion that carry frequency (CF) is the main factor which restricts the bandwidth. Then, according to the definition of CF, = /(f), in which is the shearing distance of SP, is the imaging wavelength, and f the focal length of imaging lens, we investigate how these factors influence the CF. It turns out that is the main factor which causes the fringe to arise in a certain CPI system while would add an error to CF within 5% in visible light domain. To investigate how the wavelength influences the imaging spectral bandwidth, we deduce the total irradiance on the image plane under broadband light and use Fourier transform for it to obtain the distribution of the spatial frequency of the image plane. And the conclusion is obtained that the CF bandwidth be expressed as (20-1/(2L), 20 + 1/(2L)) referred to as the Rayleigh criterion, in which 0 is the central CF and L is the range of the imaging plane. After substituting the relevant parameters into the CF bandwidth, we can obtain the imaging spectral bandwidth criterion equation as = 2D02/(4D2-02) , in which is the maximum imaging bandwidth, D is the maximum optical path difference, and 0 is the central wavelength of the CMPI system. To validate the accuracy of the spectral bandwidth criterion, some simulations are conducted to generate a maximum imaging spectral bandwidth while the visibility of the fringes decreases to 0.5 for the fringes which cannot be distinguished when the visibility is less than 0.5. The results show that the error between the simulated spectral bandwidth and the calculated spectral bandwidth is less than 1 nm. This criterion value fits the test well for the SP CMPI system. In addition, it can also be used for estimating the maximum imaging bandwidth of the other CMPI system whose shearing distance is independent or quasi-independent of wavelength.
      通信作者: 朱京平, jpzhu@xjtu.edu.cn
    • 基金项目: 国家自然科学基金青年基金(批准号: 61205187)和中央高校基本科研业务费专项资金(批准号: xkjc2013008)资助的课题.
      Corresponding author: Zhu Jing-Ping, jpzhu@xjtu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205187) and the Fundamental Research Funds for the Central Universities, China (Grant No. xkjc2013008).
    [1]

    Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453

    [2]

    Snika F, Craven-Jonesb J, Escutic M 2014 Proc. SPIE 9099 90990B-1

    [3]

    Luo G, Zhang M 2014 Chin. Phys. B 23 124101

    [4]

    Guan J G, Zhu J P, Tian H 2015 Chin. Phys. Lett. 32 074201

    [5]

    Li Y F, Zhang J Q, Qu S B 2015 Chin. Phys. B 24 014202

    [6]

    Lin C Y, Chen S J, Chen Z Y, Ding Y C 2015 Chin. Phys. B 24 117802

    [7]

    Zhao J S 2013 Infra. Technol. 35 743 (in Chinese) [赵劲松 2013 红外技术 35 743]

    [8]

    Zhu B H, Zhang C M, Jian X H, Zeng W F 2012 Acta Phys. Sin. 61 090701 (in Chinese) [祝宝辉, 张淳民, 简小华, 曾文锋 2012 61 090701]

    [9]

    Li S J, Jiang H L, Zhu J P, Duan J, Fu Q, Fu Y G, Dong K Y 2013 Chin. Opt. 6 803 (in Chinese) [李淑军, 姜会林, 朱京平, 段锦, 付强, 付跃刚, 董科研 2013 中国光学 6 803]

    [10]

    Li J, Zhu J P, Qi C, Zhen C L, Gao B, Zhang Y Y, Hou X 2013 Acta Phys. Sin. 62 044206 (in Chinese) [李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵 2013 62 044206]

    [11]

    Oka K, Kato T 1999 Opt. Lett. 24 1475

    [12]

    Oka K, Kaneko T 2003 Opt. Express 11 1510

    [13]

    Oka K, Saito N 2006 Infrared Detectors and Focal Plane Arrays VIII 6295 29508

    [14]

    Boffety M, Hu H, Goudail F 2014 Opt. Lett. 39 6759

    [15]

    Kudenov M W, Jungwirth M E L, Dereniak E L, Gerhart G R 2009 Opt. Express 17 22520

    [16]

    Kudenov M W, Escuti M J, Dereniak E L, Oka K 2011 Appl. Opt. 50 2283

    [17]

    Luo H, Oka K, DeHoog E, Kudenov M, Schiewgerling J, Dereniak E L 2008 Appl. Opt. 47 4413

  • [1]

    Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453

    [2]

    Snika F, Craven-Jonesb J, Escutic M 2014 Proc. SPIE 9099 90990B-1

    [3]

    Luo G, Zhang M 2014 Chin. Phys. B 23 124101

    [4]

    Guan J G, Zhu J P, Tian H 2015 Chin. Phys. Lett. 32 074201

    [5]

    Li Y F, Zhang J Q, Qu S B 2015 Chin. Phys. B 24 014202

    [6]

    Lin C Y, Chen S J, Chen Z Y, Ding Y C 2015 Chin. Phys. B 24 117802

    [7]

    Zhao J S 2013 Infra. Technol. 35 743 (in Chinese) [赵劲松 2013 红外技术 35 743]

    [8]

    Zhu B H, Zhang C M, Jian X H, Zeng W F 2012 Acta Phys. Sin. 61 090701 (in Chinese) [祝宝辉, 张淳民, 简小华, 曾文锋 2012 61 090701]

    [9]

    Li S J, Jiang H L, Zhu J P, Duan J, Fu Q, Fu Y G, Dong K Y 2013 Chin. Opt. 6 803 (in Chinese) [李淑军, 姜会林, 朱京平, 段锦, 付强, 付跃刚, 董科研 2013 中国光学 6 803]

    [10]

    Li J, Zhu J P, Qi C, Zhen C L, Gao B, Zhang Y Y, Hou X 2013 Acta Phys. Sin. 62 044206 (in Chinese) [李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵 2013 62 044206]

    [11]

    Oka K, Kato T 1999 Opt. Lett. 24 1475

    [12]

    Oka K, Kaneko T 2003 Opt. Express 11 1510

    [13]

    Oka K, Saito N 2006 Infrared Detectors and Focal Plane Arrays VIII 6295 29508

    [14]

    Boffety M, Hu H, Goudail F 2014 Opt. Lett. 39 6759

    [15]

    Kudenov M W, Jungwirth M E L, Dereniak E L, Gerhart G R 2009 Opt. Express 17 22520

    [16]

    Kudenov M W, Escuti M J, Dereniak E L, Oka K 2011 Appl. Opt. 50 2283

    [17]

    Luo H, Oka K, DeHoog E, Kudenov M, Schiewgerling J, Dereniak E L 2008 Appl. Opt. 47 4413

  • [1] 丁永今, 曹士英, 林百科, 王强, 韩羿, 方占军. 基于电光晶体马赫-曾德干涉仪的载波包络偏移频率调节方法.  , 2022, 71(14): 144203. doi: 10.7498/aps.71.20220147
    [2] 王田, 牛明生, 步苗苗, 韩培高, 郝殿中, 杨敬顺, 宋连科. 新型双通道差分偏振干涉成像系统.  , 2018, 67(10): 100701. doi: 10.7498/aps.67.20172691
    [3] 肖洋, 于晋龙, 王菊, 王文睿, 王子雄, 谢田元, 于洋, 薛纪强. 二次偏振调制测距系统中调制频率与测距精度的关系.  , 2016, 65(10): 100601. doi: 10.7498/aps.65.100601
    [4] 权乃承, 张淳民, 穆廷魁. 基于孔径分割与视场分割的通道型成像光谱偏振技术.  , 2016, 65(8): 080703. doi: 10.7498/aps.65.080703
    [5] 李浩, 朱京平, 张宁, 张云尧, 强帆, 宗康. 半波片角度失配对通道调制型偏振成像效果的影响及补偿.  , 2016, 65(13): 134202. doi: 10.7498/aps.65.134202
    [6] 强帆, 朱京平, 张云尧, 张宁, 李浩, 宗康, 曹莹瑜. 通道调制型偏振成像系统的偏振参量重建.  , 2016, 65(13): 130202. doi: 10.7498/aps.65.130202
    [7] 孙宗鑫, 于洋, 周锋, 刘凇佐, 乔钢. 二进制偏移载波调制的零相关窗水声同步技术研究.  , 2014, 63(10): 104301. doi: 10.7498/aps.63.104301
    [8] 马晓璐, 李培丽, 郭海莉, 张一, 朱天阳, 曹凤娇. 基于单模光纤的交叉相位调制型频率分辨光学开关超短脉冲测量.  , 2014, 63(24): 240601. doi: 10.7498/aps.63.240601
    [9] 王秀芝, 高劲松, 徐念喜. Ku/Ka波段双通带频率选择表面设计研究.  , 2013, 62(16): 167307. doi: 10.7498/aps.62.167307
    [10] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构.  , 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [11] 陈友华, 王召巴, 王志斌, 张瑞, 王艳超, 王冠军. 弹光调制型成像光谱偏振仪中的高精度偏振信息探测研究.  , 2013, 62(6): 060702. doi: 10.7498/aps.62.060702
    [12] 吴波, 于晋龙, 王文睿, 韩丙辰, 郭精忠, 罗俊, 王菊, 张晓媛, 刘毅, 杨恩泽. 基于注入半导体激光器的微波副载波相位调制信号产生.  , 2012, 61(5): 054208. doi: 10.7498/aps.61.054208
    [13] 赵顾颢, 赵尚弘, 幺周石, 蒙文, 王翔, 朱子行, 刘丰. 基于偏振编码的副载波复用量子密钥分发研究.  , 2012, 61(24): 240306. doi: 10.7498/aps.61.240306
    [14] 曹士英, 孟飞, 方占军, 李天初. 掺Er光纤飞秒激光器中高信噪比载波包络位相偏移频率获取的实验研究.  , 2012, 61(6): 064208. doi: 10.7498/aps.61.064208
    [15] 祝宝辉, 张淳民, 简小华, 曾文锋. 时空混合调制型偏振干涉成像光谱仪的全视场偏振信息探测研究.  , 2012, 61(9): 090701. doi: 10.7498/aps.61.090701
    [16] 孟庆林, 原猛, 牟宏宇, 陈友元, 冯海泓. 包络调制率和载波频率对听觉时间调制检测能力的影响.  , 2012, 61(16): 164302. doi: 10.7498/aps.61.164302
    [17] 颜森林. 交叉相位调制提高半导体激光器混沌载波发射机带宽方法.  , 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [18] 简小华, 张淳民, 祝宝辉, 任文艺. 时空混合调制型偏振干涉成像光谱仪数据处理研究.  , 2010, 59(9): 6131-6137. doi: 10.7498/aps.59.6131
    [19] 严新革, 张淳民, 赵葆常. 时空混合调制型偏振干涉成像光谱仪干涉图获取模式研究.  , 2010, 59(5): 3123-3129. doi: 10.7498/aps.59.3123
    [20] 王裴, 邵建立, 秦承森. 加载波前沿宽度对铝表面微射流的影响.  , 2009, 58(2): 1064-1070. doi: 10.7498/aps.58.1064
计量
  • 文章访问数:  6068
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-23
  • 修回日期:  2015-12-22
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map