搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铯原子7S1/2态磁偶极超精细常数的测量

任雅娜 杨保东 王杰 杨光 王军民

引用本文:
Citation:

铯原子7S1/2态磁偶极超精细常数的测量

任雅娜, 杨保东, 王杰, 杨光, 王军民

Measurement of the magnetic dipole hyperfine constant Ahfs of cesium 7S1/2 state

Ren Ya-Na, Yang Bao-Dong, Wang Jie, Yang Guang, Wang Jun-Min
PDF
导出引用
  • 在室温下的原子气室中, 基于铯原子6S1/2-6P3/2-7S1/2(852.3 nm+1469.9 nm) 阶梯型能级系统, 利用电光调制器的主频和1级边带分别产生的三套双共振吸收光谱, 当驱动电光调制器的信号源频率严格等于7S1/2态超精细分裂的能级间隔时, 三套谱线中的一些超精细跃迁谱线重叠且线宽最窄, 利用这一现象很好地避免了激光器频率扫描时非线性效应的影响, 测量出了7S1/2 态超精细分裂能级间隔: 2183.72 MHz0.23 MHz, 并计算出该态的磁偶极超精细常数: Ahfs= 545.93 m MHz0.06 MHz, 与文献中报道的测量结果一致.
    Hyperfine-structure (HFS) of atoms results from the interactions between the nuclear magnetic dipole moment and the magnetic field generated by the electrons (related to the magnetic dipole hyperfine constant Ahfs), and between the nuclear electric quadrupole moment and the electric field gradient due to the distribution of charge within atoms (related to the electric quadrupole hyperfine constant Bhfs), so the accurate measurement of HFS is of interest in many fields, including atomic parity nonconservation, tests of fundamental physics, electron-nucleus interaction, and high resolution spectrum and so on. Generally, in order to obtain the atomic spectra, the frequency of laser needs to be scanned over the hyperfine transitions of atoms, so the nonlinear effect from the laser frequency scanning often limits the measurement accuracy of hyperfine splitting. In this paper, we solve this problem, and demonstrate a novel method to measure the hyperfine splitting of atoms. Taking cesium (Cs) for example, based on the Cs 6S1/2-6P3/2-7S1/2 (852.3 nm + 1469.9 nm) ladder-type atomic system, three sets of optical-optical double resonance (OODR) spectra are obtained in a room-temperature vapor cell, when the 852.3 nm laser is tuned to the 6S1/2 (F=4)-6P3/2 (F'=4) resonant transition, and the carriers of 1469.9 nm probe laser accompanied with1 sidebands from a phase-type electro-optical modulator (EOM) are scanned over the whole 6P3/2-7S1/2 hyperfine transitions. Owing to the Doppler effect, some of the hyperfine transitions in these three sets of OODR spectra overlap with the narrowest linewidth only when the frequency of the signal driving EOM equals the value of hyperfine splitting 7S1/2 state. Using this phenomenon which can effectively avoid the nonlinear influence on the measurement during the frequency scanning process of 1469.9 nm laser, we measure the hyperfine splitting of 7S1/2 state to be (2183.720.23) MHz, and the magnetic dipole hyperfine constant Ahfs to be (545.930.06) MHz, which are consistent with previously reported experimental results. This technique provides a robust and simple method of measuring hyperfine splitting with a high precision, which is significant to provide the useful information about atomic structure for developing a more accurate theoretical model describing the interaction within an atom.
      通信作者: 杨保东, ybd@sxu.edu.cn;wwjjmm@sxu.edu.cn ; 王军民, ybd@sxu.edu.cn;wwjjmm@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB921601)、国家自然科学基金 (批准号: 11104172, 11274213, 61475091, 61227902) 和山西省太原市科学与技术研究明星项目 (批准号: 12024707) 资助的课题.
      Corresponding author: Yang Bao-Dong, ybd@sxu.edu.cn;wwjjmm@sxu.edu.cn ; Wang Jun-Min, ybd@sxu.edu.cn;wwjjmm@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921601), the National Natural Science Foundation of China (Grant Nos. 11104172, 11274213, 61475091, 61227902), and the Research Program for Science and Technology Star of Tai Yuan, Shanxi Province, China (Grant No. 12024707).
    [1]

    Song S Q, Wang G F, Ye A P, Jiang G 2007 J. Phys. B: At. Mol. Opt. Phys. 40 475

    [2]

    Moon H S, Lee W K, Suh H S 2009 Phys. Rev. A 79 062503

    [3]

    Sasada H 1992 IEEE Photon. Tech. Lett. 4 1307

    [4]

    Moon H S, Lee W K, Lee L, Kim J B 2004 Appl. Phys. Lett. 85 3965

    [5]

    Yang B D, Liang Q B, He J, Zhang T C, Wang J M 2010 Phys. Rev. A 81 043803

    [6]

    Yang B D, Gao J, Zhang T C, Wang J M 2011 Phys. Rev. A 83 013818

    [7]

    Carr C, Adams C S, Weatherill K J 2012 Opt. Lett. 37 118

    [8]

    Yang B D, Wang J, Liu H F, He J, Wang J M 2014 Opt. Commun. 319 174

    [9]

    He Z S, Tsai J H, Lee M T, Chang Y Y, Tsai C C, Whang T J 2012 J. Phys. Soc. Jpn. 81 124302

    [10]

    W D Phillips 1998 Rev. Mod. Phys. 70 721

    [11]

    Sinclair A G, McDonald B D, Riis E, Duxbury G 1994 Opt. Commun. 106 207

    [12]

    Stalnaker J E, Mbele V, Gerginov V, Fortier T M, Diddams S A, Hollberg L, Tanner C E 2010 Phys. Rev. A 81 043840

    [13]

    Fendel P, Bergeson S D, Udem Th, Hnsch T W 2007 Opt. Lett. 32 701

    [14]

    Lee W K, Moon H S, Suh H S 2007 Opt. Lett. 32 2810

    [15]

    Wang L R, Zhang Y C, Xiang S S, Cao S K, Xiao L T, Jia S T 2015 Chin. Phys. B 24 063201

    [16]

    Wang W L, Xu X Y 2010 Chin. Phys. B 19 123202

    [17]

    Ma H L 2005 Chin. Phys. 14 0511

    [18]

    Wu X L, Yu K Z, Gou B C, Zhang M 2007 Chin. Phys. 16 2389

    [19]

    Wang J, Liu H F, Yang B D, He J, Wang J M 2014 Meas. Sci. Technol. 25 035501

    [20]

    Wang J, Liu H F, Yang G, Yang B D, Wang J M 2014 Phys. Rev. A 90 052505

    [21]

    Gilbert S L, Watts R N, Wieman C E 1983 Phys. Rev. A 27 581

    [22]

    Gupta R, Happer W, Lam L K, Svanberg S 1973 Phys. Rev. A 8 2792

    [23]

    Wood C S, Bennett S C, Cho D, Masterson B P, Roberts J L, Tanner C E, Wieman C E 1997 Science 275 1759

  • [1]

    Song S Q, Wang G F, Ye A P, Jiang G 2007 J. Phys. B: At. Mol. Opt. Phys. 40 475

    [2]

    Moon H S, Lee W K, Suh H S 2009 Phys. Rev. A 79 062503

    [3]

    Sasada H 1992 IEEE Photon. Tech. Lett. 4 1307

    [4]

    Moon H S, Lee W K, Lee L, Kim J B 2004 Appl. Phys. Lett. 85 3965

    [5]

    Yang B D, Liang Q B, He J, Zhang T C, Wang J M 2010 Phys. Rev. A 81 043803

    [6]

    Yang B D, Gao J, Zhang T C, Wang J M 2011 Phys. Rev. A 83 013818

    [7]

    Carr C, Adams C S, Weatherill K J 2012 Opt. Lett. 37 118

    [8]

    Yang B D, Wang J, Liu H F, He J, Wang J M 2014 Opt. Commun. 319 174

    [9]

    He Z S, Tsai J H, Lee M T, Chang Y Y, Tsai C C, Whang T J 2012 J. Phys. Soc. Jpn. 81 124302

    [10]

    W D Phillips 1998 Rev. Mod. Phys. 70 721

    [11]

    Sinclair A G, McDonald B D, Riis E, Duxbury G 1994 Opt. Commun. 106 207

    [12]

    Stalnaker J E, Mbele V, Gerginov V, Fortier T M, Diddams S A, Hollberg L, Tanner C E 2010 Phys. Rev. A 81 043840

    [13]

    Fendel P, Bergeson S D, Udem Th, Hnsch T W 2007 Opt. Lett. 32 701

    [14]

    Lee W K, Moon H S, Suh H S 2007 Opt. Lett. 32 2810

    [15]

    Wang L R, Zhang Y C, Xiang S S, Cao S K, Xiao L T, Jia S T 2015 Chin. Phys. B 24 063201

    [16]

    Wang W L, Xu X Y 2010 Chin. Phys. B 19 123202

    [17]

    Ma H L 2005 Chin. Phys. 14 0511

    [18]

    Wu X L, Yu K Z, Gou B C, Zhang M 2007 Chin. Phys. 16 2389

    [19]

    Wang J, Liu H F, Yang B D, He J, Wang J M 2014 Meas. Sci. Technol. 25 035501

    [20]

    Wang J, Liu H F, Yang G, Yang B D, Wang J M 2014 Phys. Rev. A 90 052505

    [21]

    Gilbert S L, Watts R N, Wieman C E 1983 Phys. Rev. A 27 581

    [22]

    Gupta R, Happer W, Lam L K, Svanberg S 1973 Phys. Rev. A 8 2792

    [23]

    Wood C S, Bennett S C, Cho D, Masterson B P, Roberts J L, Tanner C E, Wieman C E 1997 Science 275 1759

  • [1] 钟振祥. 氢分子离子超精细结构理论综述.  , 2024, 73(20): 203104. doi: 10.7498/aps.73.20241101
    [2] 计晨. 原子兰姆位移与超精细结构中的核结构效应.  , 2024, 73(20): 202101. doi: 10.7498/aps.73.20241063
    [3] 陈润, 邵旭萍, 黄云霞, 杨晓华. BrF分子电磁偶极跃迁转动超精细微波谱模拟.  , 2023, 72(4): 043301. doi: 10.7498/aps.72.20221957
    [4] 田龙, 郑立昂, 张晓莉, 武奕淼, 王庆伟, 秦博, 王雅君, 李卫, 史少平, 陈力荣, 郑耀辉. 谐振型电光相位调制及光电探测功能器件的研发及应用.  , 2023, 72(14): 148502. doi: 10.7498/aps.72.20230485
    [5] 唐家栋, 刘乾昊, 程存峰, 胡水明. 磁场中HD分子振转跃迁的超精细结构.  , 2021, 70(17): 170301. doi: 10.7498/aps.70.20210512
    [6] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法.  , 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [7] 张祥, 卢本全, 李冀光, 邹宏新. Hg+离子5d106s 2S1/2→5d96s2 2D5/2钟跃迁同位素位移和超精细结构的理论研究.  , 2019, 68(4): 043101. doi: 10.7498/aps.68.20182136
    [8] 吴丹丹, 佘卫龙. 线性吸收介质非局域线性电光效应的耦合波理论.  , 2017, 66(6): 064202. doi: 10.7498/aps.66.064202
    [9] 裴栋梁, 何军, 王杰英, 王家超, 王军民. 铯原子里德伯态精细结构测量.  , 2017, 66(19): 193701. doi: 10.7498/aps.66.193701
    [10] 周飞, 曹原, 雍海林, 彭承志, 王向斌. 基于电光效应的光子频移研究.  , 2014, 63(20): 204202. doi: 10.7498/aps.63.204202
    [11] 钟东洲, 邓涛, 郑国梁. 双信道偏振复用保密通信系统的完全混沌同步的操控性研究.  , 2014, 63(7): 070504. doi: 10.7498/aps.63.070504
    [12] 李长胜. 晶体的双参量调制及其应用.  , 2014, 63(7): 074207. doi: 10.7498/aps.63.074207
    [13] 王叶兵, 陈洁, 田晓, 高峰, 常宏. 锶原子互组跃迁谱的实验研究.  , 2012, 61(2): 020601. doi: 10.7498/aps.61.020601
    [14] 陈建军, 李 智, 张家森, 龚旗煌. 基于电光聚合物的表面等离激元调制器.  , 2008, 57(9): 5893-5898. doi: 10.7498/aps.57.5893
    [15] 韩丽丽, 戴振文, 王云鹏, 蒋占魁. 钯原子谱线的分支比测量.  , 2008, 57(6): 3425-3428. doi: 10.7498/aps.57.3425
    [16] 陈岁元, 刘常升, 李慧莉, 崔 彤. 非晶Fe73.5Cu1Nb3Si13.5B9合金激光纳米化的超精细结构研究.  , 2005, 54(9): 4157-4163. doi: 10.7498/aps.54.4157
    [17] 王立军, 余慧莺. 窄带激光与能级具有超精细结构的二能级原子的相干激发.  , 2004, 53(12): 4151-4156. doi: 10.7498/aps.53.4151
    [18] 马洪良, 陆 江, 王春涛. 141Pr+波长56908 nm谱线超精细结构测量.  , 2003, 52(3): 566-569. doi: 10.7498/aps.52.566
    [19] 赵鹭明, 王立军. 超精细结构对激光与二能级原子相互作用的影响.  , 2002, 51(6): 1227-1232. doi: 10.7498/aps.51.1227
    [20] 黎光武, 马洪良, 李茂生, 陈志骏, 陈淼华, 陆福全, 彭先觉, 杨福家. LaⅡ5d2 1G4→4f5d 1F3超精 细结构光谱测量.  , 2000, 49(7): 1256-1259. doi: 10.7498/aps.49.1256
计量
  • 文章访问数:  7469
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-24
  • 修回日期:  2016-01-14
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map