搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带嵌件型腔内熔接过程的数值模拟研究

李强 李五明

引用本文:
Citation:

带嵌件型腔内熔接过程的数值模拟研究

李强, 李五明

Numerical simulation on weld line development of injection molding in mold cavity with inserts

Li Qiang, Li Wu-Ming
PDF
导出引用
  • 基于充模过程的两相黏弹性流体模型, 采用同位网格有限体积法, 结合浸入边界法和界面追踪的复合水平集流体体积方法实现了带嵌件型腔内充模过程的动态模拟. 基于上述模型和算法模拟了熔体前沿界面及熔接线的动态演化过程, 而且通过线性应力-光学定律得到了熔接线附近的流动诱导应力分布情况; 讨论了熔体温度及模具温度对熔接线区域凝固层厚度的影响. 数值结果表明: 本文提出的方法可用于模拟复杂型腔内的充模过程以及熔接线的自动追踪; 由于聚合物黏弹性熔体流动的复杂性, 当两股熔体相遇后, 熔接线不同位置的应力分布变化较大; 熔体或模具温度越高, 熔接线区域凝固层厚度越薄, 提高熔体或模具温度能够改善甚至消除充模过程中的熔接线.
    A gas-liquid two-phase model for a viscoelastic fluid is proposed and used to simulate and predict the behavior of melt welding in injection molding process, in which the extended pom-pom (XPP) model and cross-WLF viscosity model combined with Tait state equation are used to describe the constitutive relationship and viscosity change of the viscoelastic melt in this paper, respectively. Meanwhile, the coupled level-set and volume-of-fluid (CLSVOF) method is employed to capture the melt front, and the immersed boundary method is applied to the simulation of the polymer melt flows with the aid of a shaped level-set function to describe and treat the irregular mold cavities. A finite volume method on non-staggered grid is used to solve the mass, momentum, and energy conservation equations. Firstly, the benchmark problem of the single shear flow is simulated to verify the validity of the CLSVOF method. Then, the non-isothermal filling process of the viscoelastic fluid based on the XPP model in a mold with square inset is simulated, and the behavior of the weld line devolopment in the filling process is shown and compared with the experimental result. Finally, it is to simulate the evolution processes of the melt front interface and weld line in a mold with the circular notched inset; and the linear stress-optical rule is adopted to calculate the flow-induced birefringence. Numerical results show that the numerical model proposed in this paper can be employed to simulate the non-isothermal filling process in complex mold cavity and to capture the weld line automatically. Because of the complexity of polymer melt flows, the flow-induced stress increases quickly near the weld line region and then decreases gradually until reaching the mold cavity wall. The maximum value of the flow-induced stress appears at some point after the insert. The distributions of physical quantities, such as pressure and temperature in the mold, are given during the mold filling process. Moreover, it is also discussed the influence of melt and mold temperatures on the solidified layer thickness. The higher the melt or mold temperature, the thinner the solidified layer is. Thus, raising the melt or the mold temperature will improve or remove the weld line in melt filling process.
      通信作者: 李强, qianglinan@126.com
    • 基金项目: 国家自然科学基金(批准号: 11301157)、天元基金(批准号: 11326232, 11326245)、河南省高等学校重点科研项目(批准号: 15A110001)和河南理工大学博士基金(批准号: B2013-057)资助的课题.
      Corresponding author: Li Qiang, qianglinan@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11301157), the NSFC Tianyuan Fund for Mathematics (Grant Nos.11326232, 11326245), the Natural Science Foundation of Education Department of Henan Province, China (Grant No. 15A110001), and the Research Fund for the Doctoral Program of Henan Polytechnic University, China (Grant No. B2013-057).
    [1]

    Kim S W, Turng L S 2006 Polym. Eng. Sci. 46 1263

    [2]

    Hetu J F, Gao D M, Rejon A G, Salloum G 1998 Polym. Eng. Sci. 38 223

    [3]

    Jiang T, Ouyang J, Ren J L 2012 Comp. Phys. Comm. 183 50

    [4]

    Chiu P H, Lin Y T A 2011 J. Comput. Phys. 230 185

    [5]

    Liu R X, Shu Q W 2003 Some New Methods of Computational Fluid Dynamics (Beijing: Science Press) (in Chinese) [刘儒勋, 舒其望 2003 计算流体力学的若干新方法(北京:科学出版社)]

    [6]

    Bonito A, Picasso M, Laso M 2006 J. Comput. Phys. 215 691

    [7]

    Han Y, Cai G B, Xu X, Renou B, Boukhalfa A 2014 Chin. Phys. B 23 058901

    [8]

    Wang F, Li J L, Yang B X 2014 Acta Phys. Sin. 63 084601 (in Chinese) [王芳, 李俊林, 杨斌鑫 2014 63 084601]

    [9]

    Park I R, Kim K S, Kim J, Van S H 2009 Int. J. Numer. Meth. Fl. 61 1331

    [10]

    Sussman M 2003 J. Comput. Phys. 187 110

    [11]

    Dai J F, Fan X P, Meng B, Liu J F 2015 Acta Phys. Sin. 64 094704 (in Chinese) [戴剑锋, 樊学萍, 蒙波, 刘骥飞 2015 64 094704]

    [12]

    Li Q, Ouyang J, Yang B X, Li X J 2012 Appl. Math. Model. 36 2262

    [13]

    Zheng S P, Ouyang J, Zhao Z F, Zhang L 2012 Comput. Math. Appl. 64 2860

    [14]

    Ren J L, Lu W G, Jiang T 2015 Acta Phys. Sin. 64 080202 (in Chinese) [任金莲, 陆伟刚, 蒋涛 2015 64 080202]

    [15]

    Shen C Y 2009 Simulation of Injection Molding and Theories and Methods for Optimization of Moulds Designing (Beijing: Science Press) (in Chinese) [申长雨 2009 注塑成型模拟及模具优化设计理论与方法(北京:科学出版社)]

    [16]

    Yang B X, Ouyang J, Wang F 2013 J. Appl. Math. 2013 856171

    [17]

    Araujo B J, Teixeira J C F, Cunha A M, Groth C P T 2009 Int. J. Numer. Meth. Fl. 59 801

    [18]

    Peskin C S 1972 J. Comput. Phys. 10 252

    [19]

    Yuan R F, Zhong C W, Zhang H 2015 J. Comput. Phys. 296 184

    [20]

    Cai Li, Gao H, Luo X Y, Nie Y F 2015 Sci. China: Phys. Mech. Astron. 45 024702 (in Chinese) [蔡力, 高昊, 罗小玉, 聂玉峰 2015 中国科学: 物理, 力学, 天文学 45 024702]

    [21]

    Boronat T, Segui V J, Peydro M A, Reig M J 2009 J. Mater. Process. Tech. 209 2735

    [22]

    Isayev A I, Shyu G D, Li C T 2006 J. Polym. Sci. Pol. Phys. 44 622

    [23]

    Osher S, Fedkiw R 2003 Level Set Methods and Dynamic Implicit Surfaces (New York: Springer) p9

    [24]

    Pijl S P 2005 Ph. D. Dissertation (Delft: Delft University of Technology)

    [25]

    Li Q, Ouyang J, Yang B X, Jiang T 2011 Appl. Math. Model. 35 257

  • [1]

    Kim S W, Turng L S 2006 Polym. Eng. Sci. 46 1263

    [2]

    Hetu J F, Gao D M, Rejon A G, Salloum G 1998 Polym. Eng. Sci. 38 223

    [3]

    Jiang T, Ouyang J, Ren J L 2012 Comp. Phys. Comm. 183 50

    [4]

    Chiu P H, Lin Y T A 2011 J. Comput. Phys. 230 185

    [5]

    Liu R X, Shu Q W 2003 Some New Methods of Computational Fluid Dynamics (Beijing: Science Press) (in Chinese) [刘儒勋, 舒其望 2003 计算流体力学的若干新方法(北京:科学出版社)]

    [6]

    Bonito A, Picasso M, Laso M 2006 J. Comput. Phys. 215 691

    [7]

    Han Y, Cai G B, Xu X, Renou B, Boukhalfa A 2014 Chin. Phys. B 23 058901

    [8]

    Wang F, Li J L, Yang B X 2014 Acta Phys. Sin. 63 084601 (in Chinese) [王芳, 李俊林, 杨斌鑫 2014 63 084601]

    [9]

    Park I R, Kim K S, Kim J, Van S H 2009 Int. J. Numer. Meth. Fl. 61 1331

    [10]

    Sussman M 2003 J. Comput. Phys. 187 110

    [11]

    Dai J F, Fan X P, Meng B, Liu J F 2015 Acta Phys. Sin. 64 094704 (in Chinese) [戴剑锋, 樊学萍, 蒙波, 刘骥飞 2015 64 094704]

    [12]

    Li Q, Ouyang J, Yang B X, Li X J 2012 Appl. Math. Model. 36 2262

    [13]

    Zheng S P, Ouyang J, Zhao Z F, Zhang L 2012 Comput. Math. Appl. 64 2860

    [14]

    Ren J L, Lu W G, Jiang T 2015 Acta Phys. Sin. 64 080202 (in Chinese) [任金莲, 陆伟刚, 蒋涛 2015 64 080202]

    [15]

    Shen C Y 2009 Simulation of Injection Molding and Theories and Methods for Optimization of Moulds Designing (Beijing: Science Press) (in Chinese) [申长雨 2009 注塑成型模拟及模具优化设计理论与方法(北京:科学出版社)]

    [16]

    Yang B X, Ouyang J, Wang F 2013 J. Appl. Math. 2013 856171

    [17]

    Araujo B J, Teixeira J C F, Cunha A M, Groth C P T 2009 Int. J. Numer. Meth. Fl. 59 801

    [18]

    Peskin C S 1972 J. Comput. Phys. 10 252

    [19]

    Yuan R F, Zhong C W, Zhang H 2015 J. Comput. Phys. 296 184

    [20]

    Cai Li, Gao H, Luo X Y, Nie Y F 2015 Sci. China: Phys. Mech. Astron. 45 024702 (in Chinese) [蔡力, 高昊, 罗小玉, 聂玉峰 2015 中国科学: 物理, 力学, 天文学 45 024702]

    [21]

    Boronat T, Segui V J, Peydro M A, Reig M J 2009 J. Mater. Process. Tech. 209 2735

    [22]

    Isayev A I, Shyu G D, Li C T 2006 J. Polym. Sci. Pol. Phys. 44 622

    [23]

    Osher S, Fedkiw R 2003 Level Set Methods and Dynamic Implicit Surfaces (New York: Springer) p9

    [24]

    Pijl S P 2005 Ph. D. Dissertation (Delft: Delft University of Technology)

    [25]

    Li Q, Ouyang J, Yang B X, Jiang T 2011 Appl. Math. Model. 35 257

  • [1] 孙佳坤, 林传栋, 苏咸利, 谭志城, 陈亚楼, 明平剑. 离散Boltzmann方程的求解: 基于有限体积法.  , 2024, 73(11): 110504. doi: 10.7498/aps.73.20231984
    [2] 高效伟, 丁金兴, 刘华雩. 有限线法及其在流固域间耦合传热中的应用.  , 2022, 71(19): 190201. doi: 10.7498/aps.71.20220833
    [3] 陈博, 汪宏年, 杨守文, 殷长春. 海洋可控源三维电磁响应显式灵敏度矩阵的快速算法.  , 2021, 70(6): 069101. doi: 10.7498/aps.70.20201282
    [4] 辛建建, 陈振雷, 石凡, 石伏龙. 基于直角网格法的单个和阵列布置下柔性水翼绕流数值模拟.  , 2020, 69(4): 044702. doi: 10.7498/aps.69.20191711
    [5] 张妮, 刘丁, 冯雪亮. 直拉硅单晶生长过程中工艺参数对相变界面形态的影响.  , 2018, 67(21): 218701. doi: 10.7498/aps.67.20180305
    [6] 辛建建, 石伏龙, 金秋. 一种径向基函数虚拟网格法数值模拟复杂边界流动.  , 2017, 66(4): 044704. doi: 10.7498/aps.66.044704
    [7] 吴晓笛, 刘华坪, 陈浮. 基于浸入边界-多松弛时间格子玻尔兹曼通量求解法的流固耦合算法研究.  , 2017, 66(22): 224702. doi: 10.7498/aps.66.224702
    [8] 李强, 邵水军, 李世顺. 复杂型腔充模过程中分子构型演化的数值模拟.  , 2016, 65(24): 244601. doi: 10.7498/aps.65.244601
    [9] 王浩森, 杨守文, 白彦, 陈涛, 汪宏年. 非均质各向异性地层中方位随钻电磁测井响应三维有限体积法数值模拟算法.  , 2016, 65(7): 079101. doi: 10.7498/aps.65.079101
    [10] 张琪, 张然, 宋海明. 美式回望期权定价问题的有限体积法.  , 2015, 64(7): 070202. doi: 10.7498/aps.64.070202
    [11] 刘飞飞, 魏守水, 魏长智, 任晓飞. 基于速度源修正的浸入边界-晶格玻尔兹曼法研究仿生微流体驱动模型.  , 2014, 63(19): 194704. doi: 10.7498/aps.63.194704
    [12] 周建美, 张烨, 汪宏年, 杨守文, 殷长春. 耦合势有限体积法高效模拟各向异性地层中海洋可控源的三维电磁响应.  , 2014, 63(15): 159101. doi: 10.7498/aps.63.159101
    [13] 徐润汶, 郭立新, 范天奇. 有限元/边界积分方法在海面及其上方弹体目标电磁散射中的应用.  , 2013, 62(17): 170301. doi: 10.7498/aps.62.170301
    [14] 辛成运, 程晓舫, 张忠政. 基于有限立体角测量的谱色测温法.  , 2013, 62(3): 030702. doi: 10.7498/aps.62.030702
    [15] 杨斌鑫, 欧阳洁. 黏弹性熔体充模流动诱导残余应力模拟.  , 2012, 61(23): 234602. doi: 10.7498/aps.61.234602
    [16] 杨斌鑫, 欧阳洁, 栗雪娟. 复杂型腔充模中纤维取向的动态模拟.  , 2012, 61(4): 044701. doi: 10.7498/aps.61.044701
    [17] 宁方立, 董梁, 张文治, 王康. 谐振管内非线性驻波的有限体积数值算法.  , 2012, 61(19): 190203. doi: 10.7498/aps.61.190203
    [18] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析.  , 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [19] 郑曙东, 李博文, 李冀光, 董晨钟, 袁文渊. 原子核的有限体积效应对高离化态离子能级和波函数的影响.  , 2009, 58(3): 1556-1562. doi: 10.7498/aps.58.1556
    [20] 梁 双, 吕燕伍. 有限元法计算GaN/AlN量子点结构中的电子结构.  , 2007, 56(3): 1617-1620. doi: 10.7498/aps.56.1617
计量
  • 文章访问数:  6639
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-10
  • 修回日期:  2015-12-01
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map