-
Quartz-enhanced photoacoustic spectroscopy (QEPAS) technology was invented lately. Therefore it is an innovative method for trace gas detection compared with other existing technologies. In this paper, trace gas detection for carbon monoxide (CO) based on QEPAS technology is demonstrated. In order to realize high sensitive detection, a novel mid-infrared, state-of-art 4.6 m high power, continuous wave (CW), distributed feedback (DFB) quantum cascade laser (QCL) with single mode output is used as the laser exciting source. Therefore, the strongest absorption of fundamental frequency band of CO is achieved. Using the wavelength modulation spectroscopy and the 2nd harmonic detection, the influence of laser wavelength modulation depth on QEPAS signal level is investigated. Two important parameters of Q-factor and resonant frequency for quartz tuning fork as a function of gas pressure are measured. After optimization of the modulation depth of laser wavelength, the gas pressure of CO:N2 gas mixture and the improving speed of the V-R relaxation rate through the addition of water vapor, a minimum detection limit (MDL) of 1.95 parts per billion by volume (ppbv) for CO at gas pressure of 500 Torr and modulation depth of 0.2 cm-1 is achieved with a 1 sec acquisition time and the addition of 2.6% water vapor in the analyzed gas mixture. Finally, the influence of level lifetime of the targeted gas on QEPAS signal amplitude is investigated by comparison of CO QEPAS sensor performance using two different CO absorption lines of R(5) and R(6) located at 2165.6 cm-1 and 2169.2 cm-1respectively. The expression of the QEPAS signal amplitude is modified by adding the level lifetime parameter for a better precision.
[1] Bradshaw J L, Bruno J D, Lascola K M, Leavitt R P, Pham J T, Towner F J, Sonnenfroh D M, Parameswaran K R 2011 Proc. of SPIE 8032 80320D
[2] Ren W, Farooq A, Davidson D F, Hanson R K 2012 Appl. Phys. B 107 849
[3] Wagner S, Klein M, Kathrotia T, Riedel U, Kissel T, Dreizler A, Ebert V 2012 Appl Phys. B 109 533
[4] Khalil M A K, Rasmussen R A 1984 Science 224 54
[5] Logan J A, Prather M J, Wofsy S C, McElroy M B 1981 J. Geophys. Res. 86 7210
[6] Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902
[7] Gong P, Xie L, Qi X Q, Wang R, Wang H, Chang M C, Yang H X, Sun F, Li G P 2015 Chin. Phys. B 24 014206
[8] Dong L, Spagnolo V, Lewicki R, Tittel F K 2012 Opt. Express 19 24037
[9] Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594
[10] Liu K, Li J S, Wang L, Tan T, Zhang W J, Gao X M, Chen W D, Tittel F K 2009 Appl. Phys. B 94 527
[11] Yin X K, Zheng H D, Dong L, Wu H P, Liu X L, Ma W G, Zhang L, Yin W B, Jia S T 2015 Acta Phys. Sin. 64 130701 (in Chinese) [尹旭坤, 郑华丹, 董磊, 武红鹏, 刘小利, 马维光, 张雷, 尹王保, 贾锁堂 2015 64 130701]
[12] Ma Y F, Yu X, Yu G, Li X D, Zhang J B, Chen D Y, Sun R 2015 Appl. Phys. Lett. 107 021106
[13] Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594
[14] Borri S, Patimisco P, Galli I, Mazzotti D, Giusfredi G, Akikusa N, Yamanishi M, Scamarcio G, de Natale P, Spagnolo V 2014 Appl. Phys. Lett. 104 091114
[15] Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553
[16] Ma Y F, Yu G, Zhang J B, Yu X, Sun R, Tittel F K 2015 Sensors 15 7596
[17] Dong L, Kosterev A A, Thomazy D, Tittel F K 2010 Appl. Phys. B 100 627
[18] Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L, Morozov I V 2005 Rev. Sci. Instrum. 76 043105
[19] Ma Y F, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008
-
[1] Bradshaw J L, Bruno J D, Lascola K M, Leavitt R P, Pham J T, Towner F J, Sonnenfroh D M, Parameswaran K R 2011 Proc. of SPIE 8032 80320D
[2] Ren W, Farooq A, Davidson D F, Hanson R K 2012 Appl. Phys. B 107 849
[3] Wagner S, Klein M, Kathrotia T, Riedel U, Kissel T, Dreizler A, Ebert V 2012 Appl Phys. B 109 533
[4] Khalil M A K, Rasmussen R A 1984 Science 224 54
[5] Logan J A, Prather M J, Wofsy S C, McElroy M B 1981 J. Geophys. Res. 86 7210
[6] Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902
[7] Gong P, Xie L, Qi X Q, Wang R, Wang H, Chang M C, Yang H X, Sun F, Li G P 2015 Chin. Phys. B 24 014206
[8] Dong L, Spagnolo V, Lewicki R, Tittel F K 2012 Opt. Express 19 24037
[9] Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594
[10] Liu K, Li J S, Wang L, Tan T, Zhang W J, Gao X M, Chen W D, Tittel F K 2009 Appl. Phys. B 94 527
[11] Yin X K, Zheng H D, Dong L, Wu H P, Liu X L, Ma W G, Zhang L, Yin W B, Jia S T 2015 Acta Phys. Sin. 64 130701 (in Chinese) [尹旭坤, 郑华丹, 董磊, 武红鹏, 刘小利, 马维光, 张雷, 尹王保, 贾锁堂 2015 64 130701]
[12] Ma Y F, Yu X, Yu G, Li X D, Zhang J B, Chen D Y, Sun R 2015 Appl. Phys. Lett. 107 021106
[13] Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594
[14] Borri S, Patimisco P, Galli I, Mazzotti D, Giusfredi G, Akikusa N, Yamanishi M, Scamarcio G, de Natale P, Spagnolo V 2014 Appl. Phys. Lett. 104 091114
[15] Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553
[16] Ma Y F, Yu G, Zhang J B, Yu X, Sun R, Tittel F K 2015 Sensors 15 7596
[17] Dong L, Kosterev A A, Thomazy D, Tittel F K 2010 Appl. Phys. B 100 627
[18] Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L, Morozov I V 2005 Rev. Sci. Instrum. 76 043105
[19] Ma Y F, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008
计量
- 文章访问数: 7557
- PDF下载量: 241
- 被引次数: 0