搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮分子固体中配位环境对其分子振动的影响

曹山 黎军 刘元琼 王凯 林伟 雷海乐

引用本文:
Citation:

氮分子固体中配位环境对其分子振动的影响

曹山, 黎军, 刘元琼, 王凯, 林伟, 雷海乐

Effect of local coordination environment on molecule vibration in N2-molecule solid

Cao Shan, Li Jun, Liu Yuan-Qiong, Wang Kai, Lin Wei, Lei Hai-Le
PDF
导出引用
  • 研究了孤立氮分子与处于氮分子固体中氮分子之间的振动频率差异. 基于-N2晶体结构建立了5种不同氮分子数的氮分子固体团簇模型, 采用密度泛函理论计算了孤立自由氮分子及各固体模型中氮分子的振动频率, 并对它们的频率进行了比较和讨论. 比较发现: 受集体效应的影响, 处于分子固体模型中的所有氮分子的键长较孤立自由氮分子的键长更短, 振动频率更高; 就固体模型本身而言, 分子数越多, 平均振动频率越大, 而且, 内部氮分子的振动频率总是大于表面氮分子的振动频率, 整体来说, 频率大小关系为v内部 v表面 v孤立. 讨论分析认为这种频率差异主要是由于孤立自由氮分子、固体表面和内部分子的配位关系不同引起的; 表面分子存在大量配位缺陷, 与其相互作用的分子相对较少, 氮分子键力较弱, 从而频率更低.
    The vibration feature in a molecule solid is an important character of its structure. The different vibration frequencies of isolated nitrogen molecule (N2) and nitrogen molecule in the solid state are explored. Five solid-cluster models with the different numbers of nitrogen molecules (N46, N60, N76, N100, and N126) are constructed on the basis of -N2 crystal structures. The density functional theory is used to calculate the vibration frequencies of nitrogen molecules. The calculated infrared spectra and average vibration frequencies (AVFs) of the optimized structures for the five models are compared with each other. The results indicate that the AVF of nitrogen molecule in solid model is higher than that of isolated nitrogen molecule due to the collective effect. It is found that the AVF increases with increasing the number of molecules. The AVF of the inner molecules is always higher than that of surface molecules in the solid. On a whole, the vibration frequencies are ordered as vinner vsurface visolated for each case. The local coordination environment is believed to be mainly responsible for the differences in frequency among the isolated, surface and inner molecules. The bond length of molecule in solid is shorter than that in an isolated molecule, thus resulting in a stronger bond force and a higher vibration frequency. Similarly, due to a smaller number of molecules interacting with surface molecules, the bond force between molecules in the solid surface is weaker, thus resulting in a lower vibration frequency than in the inner region of solid.
      通信作者: 雷海乐, hailelei@caep.ac.cn
      Corresponding author: Lei Hai-Le, hailelei@caep.ac.cn
    [1]

    Sheng D T, Ewing G E 1971 J. Chem. Phys. 55 5425

    [2]

    Shapiro M M, Gush H P 1966 Can. J. Phys. 44 949

    [3]

    Crawford M F, Welsh H L, Locke J L 1949 Phys. Rev. 75 1607

    [4]

    Reddy S P, Cho C W 1965 Can. J. Phys. 43 2331

    [5]

    Cao S, Liu J P, Li J, Wang K, Lin W, Lei H L 2015 Acta Phys. Sin. 64 073301 (in Chinese) [曹山, 刘江平, 黎军, 王凯, 林伟, 雷海乐 2015 64 073301]

    [6]

    Smith A L, Keller W E, Johnston H L 1950 Phys. Rev. 79 728

    [7]

    Jodl H J, Loewen W, Griffith D 1987 Solid State Commun. 61 503

    [8]

    Andersont A, Sun S T, Donkersloot M C A 1970 Can. J. Phys. 48 2265

    [9]

    Luty T, Pawley G S 1974 Chem. Phys. Lett. 28 593

    [10]

    Cardini G, OShea S F 1985 Phys. Rev. B 32 2489

    [11]

    Scott T A 1976 Phys. Rep. 27 89

    [12]

    Venables J A, English C A 1974 Acta Cryst. B 30 929

    [13]

    Bolz L H, Boyd M E, Mauer F A, Peiser H S 1959 Acta Cryst. 12 247

    [14]

    Sholl D S, Sreckel J A (translated by Li J, Zhou Y) 2014 Density Functional Theory (BeiJing: National Defence Industry Press) p119 (in Chinese) [萧 D S, 斯特克尔 J A 著 (李健, 周勇 译) 2014 密度泛函理论 (国防工业出版社)第119页]

    [15]

    Lin M H 2004 Calculation Methods and Application of Quantum Chemistry (BeiJing: Science Press) p60 (in Chinese) [林梦海 2004 量子化学计算方法与应用 (科学出版社) 第60页]

    [16]

    English C A, Venables J A 1974 Proc. R. Soc. Lond. A 340 57

    [17]

    Sun D Y, Gong X G, Wang X Q 2001 Phys. Rev. B 63 193412

    [18]

    Lei H L, Li J, Liu Y Q, Liu X 2013 EPL 101 46001

    [19]

    Meyer R, Lewis L J, Prakash S, Entel P 2003 Phys. Rev. B 68 104303

    [20]

    Wolf D, Wang J, Phillpot S R, Gleiter H 1995 Phys. Rev. Lett. 74 4686

  • [1]

    Sheng D T, Ewing G E 1971 J. Chem. Phys. 55 5425

    [2]

    Shapiro M M, Gush H P 1966 Can. J. Phys. 44 949

    [3]

    Crawford M F, Welsh H L, Locke J L 1949 Phys. Rev. 75 1607

    [4]

    Reddy S P, Cho C W 1965 Can. J. Phys. 43 2331

    [5]

    Cao S, Liu J P, Li J, Wang K, Lin W, Lei H L 2015 Acta Phys. Sin. 64 073301 (in Chinese) [曹山, 刘江平, 黎军, 王凯, 林伟, 雷海乐 2015 64 073301]

    [6]

    Smith A L, Keller W E, Johnston H L 1950 Phys. Rev. 79 728

    [7]

    Jodl H J, Loewen W, Griffith D 1987 Solid State Commun. 61 503

    [8]

    Andersont A, Sun S T, Donkersloot M C A 1970 Can. J. Phys. 48 2265

    [9]

    Luty T, Pawley G S 1974 Chem. Phys. Lett. 28 593

    [10]

    Cardini G, OShea S F 1985 Phys. Rev. B 32 2489

    [11]

    Scott T A 1976 Phys. Rep. 27 89

    [12]

    Venables J A, English C A 1974 Acta Cryst. B 30 929

    [13]

    Bolz L H, Boyd M E, Mauer F A, Peiser H S 1959 Acta Cryst. 12 247

    [14]

    Sholl D S, Sreckel J A (translated by Li J, Zhou Y) 2014 Density Functional Theory (BeiJing: National Defence Industry Press) p119 (in Chinese) [萧 D S, 斯特克尔 J A 著 (李健, 周勇 译) 2014 密度泛函理论 (国防工业出版社)第119页]

    [15]

    Lin M H 2004 Calculation Methods and Application of Quantum Chemistry (BeiJing: Science Press) p60 (in Chinese) [林梦海 2004 量子化学计算方法与应用 (科学出版社) 第60页]

    [16]

    English C A, Venables J A 1974 Proc. R. Soc. Lond. A 340 57

    [17]

    Sun D Y, Gong X G, Wang X Q 2001 Phys. Rev. B 63 193412

    [18]

    Lei H L, Li J, Liu Y Q, Liu X 2013 EPL 101 46001

    [19]

    Meyer R, Lewis L J, Prakash S, Entel P 2003 Phys. Rev. B 68 104303

    [20]

    Wolf D, Wang J, Phillpot S R, Gleiter H 1995 Phys. Rev. Lett. 74 4686

  • [1] 徐又捷, 郭迎春, 王兵兵. 多原子分子简正振动频率的量化计算.  , 2022, 71(9): 093101. doi: 10.7498/aps.71.20212108
    [2] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究.  , 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [3] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究.  , 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [4] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究.  , 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [5] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算.  , 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [6] 曹山, 刘江平, 黎军, 王凯, 林伟, 雷海乐. 近三相点氮分子固体的低温红外吸收特性研究.  , 2015, 64(7): 073301. doi: 10.7498/aps.64.073301
    [7] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究.  , 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [8] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究.  , 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [9] 柳福提, 程艳, 陈向荣, 程晓洪, 曾志强. Au-Si60-Au分子结电子输运性质的理论计算.  , 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [10] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究.  , 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [11] 黄平, 杨春. TiO2分子在GaN(0001)表面吸附的理论研究.  , 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [12] 范冰冰, 王利娜, 温合静, 关莉, 王海龙, 张锐. 水分子链受限于单壁碳纳米管结构的密度泛函理论研究.  , 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [13] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究.  , 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [14] 高虹, 朱卫华, 唐春梅, 耿芳芳, 姚长达, 徐云玲, 邓开明. 内掺氮富勒烯N2@C60的几何结构和电子性质的密度泛函计算研究.  , 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [15] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究.  , 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [16] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究.  , 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] 朱应涛, 杨传路, 王美山, 董永绵. β-Si3N4电子结构和红外和拉曼频率的第一性原理研究.  , 2008, 57(2): 1048-1053. doi: 10.7498/aps.57.1048
    [18] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究.  , 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [19] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究.  , 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [20] 额尔敦朝鲁, 李树深, 肖景林. 晶格热振动对准二维强耦合极化子有效质量的影响.  , 2005, 54(9): 4285-4293. doi: 10.7498/aps.54.4285
计量
  • 文章访问数:  6477
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-18
  • 修回日期:  2015-11-06
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map