-
本文以30 ps的脉冲激光为激发光源, 用Z扫描技术研究了偶氮苯类材料4-羟基-4'-羧基偶氮苯(BN)和N-(3, 4, 5-辛氧基苯基)-N'-4-[(4-羟基苯)偶氮苯]1, 3, 4-恶二唑(AOB-t8) 及金属复合物(Au/AOB-t8)的三阶非线性光学性质, 并从理论上进行了分析和计算. 结果表明, AOB-t8的三阶非线性极化率是BN的1.38倍, 其非线性光学效应的增大是由共轭链增长、大 键增多引起的. 结果同时给出, AOB-t8的三阶非线性极化率是其与金纳米颗粒复合物的4.7倍, 这种与金属复合产生的非线性光学效应的减弱是金属引入的局域场效应与有机分子大键作用之间相互抵消导致的.In recent years, azobenzene derivates have received much attention for their potential application in optical data storage, biophotonics, holographic memories and waveguide switches optical sensors, and sensitive optical components from laser damage in both civilian and military applications. Experimental and theoretical studies demonstrate clearly the effect of the sonor-pi-acceptor (D- -A) conjugation on the steady-state and time-resolved PL spectra of azobenzene derivate films in multifarious situations, but comparatively little is concerned about the two-photon absorption and refraction involved in a single benzene ring. Furthermore, the excitation laser source on the azobenzene derivates in some investigations is continuum laser or nanosecond pulsed laser, where it is hard to avoid thermal effect on nonlinear optical (NLO) process produced by these lasers. To explore the origin of the azobenzene derivates' D- -A conjugation-dependent NLO process is a challenging task and has great signicance in describing the molecular structures of these azobenzene nanostructures as well as improving the performance of azobenzene derivates' devices. The D- -A conjugation of azobenzene functional material can be modified by mixing the azobenzene derivates with metal nanoparticles, so it is convenient to study how the D- -A conjugation affects the NLO properties by using the azobenzene derivate-metal composites. In this letter, the D- -A conjugation-dependent NLO absorption and refraction of the two kinds of azobenzene derivates 4-((4'-hydroxybenzene) azo) benzyl acid(BN) and N-(3, 4, 5-octanoxyphnyl)-N'-4-[(4-hydroxyphenyl) azophenyl]1, 3, 4-oxadiazole (AOB-t8) are investigated by Z-scan technology using 32 ps laser pulse width at 532 nm. The azobenzene derivates' surface is modified using the D- -A conjugation control and overcoating Au nanoparticles on the azobenzene derivates; and the Au/AOB-t8 composites, BN and AOB-t8 are characterized by Z-scans and absorption/fluorescence spectrum, and also calculated based on plasma resonance. The third-order NLO susceptibility of AOB-t8 is enhanced as compared with BN due to the growing conjugate chain and the increasingly extended bond. However, the third-order NLO susceptibility of AOB-t8 is decreased in the composite(Au/AOB-t8) for the cooperation of the local field effect induced by the gold nanoparticles and the extended bond of organic molecules. This work may be helpful to the understanding of the physical mechanism of the surface states and the surface-related optical nonlinearity of semiconductor QDs.
-
Keywords:
- azobenzene derivates /
- third-order optical nonlinearity /
- surface plasmon resonance /
- local field
[1] Bhagavannarayana G, Riscob B, Shakir M 2011 Mater. Chem. Phys. 126 20
[2] Harutyunyan H, Volpe G, Quidant R, Novotny L 2012 Phys. Rev. Lett. 108 217403
[3] Zhu B H, Wang F F, Zhang K, Ma G H, Guo L J, Qian S X 2007 Acta Phys.Sin. 56 4024 (in Chinese) [朱宝华, 王芳芳, 张琨, 马国宏, 郭立俊, 钱世雄 2007 56 4024]
[4] Tabiryan N, Hrozhyk U, Serak S 2004 Phys. Rev. Lett. 93 113901
[5] Jaunet-Lahary T, Chantzis A, Chen K J, Laurent A D, Jacquemin D 2014 J. Phys. Chem. C 118 28831
[6] Zhao F, Wang C, Zeng Y, Jin Z, Ma G 2013 Chem. Phys. Lett. 558 100
[7] Virkki M, Tuominen O, Forni A, Saccone M, Metrangolo P, Resnati G, Priimagi A 2015 J. Mater. Chem. C 3 3003
[8] Brzozowski L, Sargent E H 2001 J. Mater. Sci. Mater. Elect. 12 483
[9] Bandara H M D, Burdette S C 2012 Chem. Soc. Rev. 41 1809
[10] Papagiannouli I, Iliopoulos K, Gindre D, Sahraoui B, Krupka O, Smokal V, Couris S 2012 Chem. Phys. Lett. 554 107
[11] El Ouazzani H, Iliopoulos K, Pranaitis M, Krupka O, Smokal V, Kolendo A, Sahraoui B 2011 J. Phys. Chem. B 115 1944
[12] Li N J, Lu J M, Li H, Kang E T 2011 Dyes Pigments 88 18
[13] Yan Z Q, Guang S Y, Xu H Y, Liu X Y 2013 Dyes Pigments 99 720
[14] Zeng Y, Pan Z H, Zhao F L, Qin M, Zhou Y, Wang C S 2014 Chin. Phys. B 23 024212
[15] Papagiannouli I, Iliopoulos K, Gindre D, Sahraoui B, Krupka O, Smokal V, Kolendo A, Couris S 2012 Chem. Phys. Lett. 554 107
[16] Kerasidou A P, Khammar F, Iliopoulos K, Ayadi A, El-Ghayoury A, Zouari N, Mhiri T, Sahraoui B 2014 Chem. Phys. Lett. 597 106
[17] Liaros N, Couris S, Maggini L, De Leo F, Cattaruzza F, Aurisicchio C, Bonifazi D 2013 Chem. Phys. Chem. 14 2961
[18] El Ouazzani H, Iliopoulos K, Pranaitis M, Krupka O, Smokal V, Kolendo A, Sahraoui B 2011 J. Phys. Chem. B 115 1944
[19] Qian Y, Xiao G M, Wang G, Lin B P, Cui Y, Sun Y M 2007 Dyes Pigments 75 218
[20] Wu S J, Qian W, Xia Z J, Zou Y H, Wang S Q, Shen S Y, Xu H J 2000 Chem. Phys. Lett. 330 535
[21] Zhu B H, Wang F F, Zhang K, Ma G H, Gu Y Z, Guo L J, Qian S X 2008 Acta Phys. Sin. 57 3085 (in Chinese) [朱宝华, 王芳芳, 张琨, 马国宏, 顾玉宗, 郭立俊, 钱世雄 2008 57 3085]
[22] Ran X, Wang H, Lou J, Shi L L, Liu B, Li M, Guo L J 2014 Soft Mater. 12 396
[23] Ji X H, Song X, Li J, Bai Y, Yang W, Peng X 2007 J. Am. Chem. Soc. 129 13939
[24] Sheik-Bahae M, SAID A A, WEI T, Hagan D J, Vanstryland E W 1990 IEEE J. Quant. Elect. 26 760
[25] Agrawal G P, Cojan C, Flytzanis C 1978 Phys. Rev. B 17 776
[26] Sipe J E, Boyd R W 1992 Phys. Rev. A 46 1614
-
[1] Bhagavannarayana G, Riscob B, Shakir M 2011 Mater. Chem. Phys. 126 20
[2] Harutyunyan H, Volpe G, Quidant R, Novotny L 2012 Phys. Rev. Lett. 108 217403
[3] Zhu B H, Wang F F, Zhang K, Ma G H, Guo L J, Qian S X 2007 Acta Phys.Sin. 56 4024 (in Chinese) [朱宝华, 王芳芳, 张琨, 马国宏, 郭立俊, 钱世雄 2007 56 4024]
[4] Tabiryan N, Hrozhyk U, Serak S 2004 Phys. Rev. Lett. 93 113901
[5] Jaunet-Lahary T, Chantzis A, Chen K J, Laurent A D, Jacquemin D 2014 J. Phys. Chem. C 118 28831
[6] Zhao F, Wang C, Zeng Y, Jin Z, Ma G 2013 Chem. Phys. Lett. 558 100
[7] Virkki M, Tuominen O, Forni A, Saccone M, Metrangolo P, Resnati G, Priimagi A 2015 J. Mater. Chem. C 3 3003
[8] Brzozowski L, Sargent E H 2001 J. Mater. Sci. Mater. Elect. 12 483
[9] Bandara H M D, Burdette S C 2012 Chem. Soc. Rev. 41 1809
[10] Papagiannouli I, Iliopoulos K, Gindre D, Sahraoui B, Krupka O, Smokal V, Couris S 2012 Chem. Phys. Lett. 554 107
[11] El Ouazzani H, Iliopoulos K, Pranaitis M, Krupka O, Smokal V, Kolendo A, Sahraoui B 2011 J. Phys. Chem. B 115 1944
[12] Li N J, Lu J M, Li H, Kang E T 2011 Dyes Pigments 88 18
[13] Yan Z Q, Guang S Y, Xu H Y, Liu X Y 2013 Dyes Pigments 99 720
[14] Zeng Y, Pan Z H, Zhao F L, Qin M, Zhou Y, Wang C S 2014 Chin. Phys. B 23 024212
[15] Papagiannouli I, Iliopoulos K, Gindre D, Sahraoui B, Krupka O, Smokal V, Kolendo A, Couris S 2012 Chem. Phys. Lett. 554 107
[16] Kerasidou A P, Khammar F, Iliopoulos K, Ayadi A, El-Ghayoury A, Zouari N, Mhiri T, Sahraoui B 2014 Chem. Phys. Lett. 597 106
[17] Liaros N, Couris S, Maggini L, De Leo F, Cattaruzza F, Aurisicchio C, Bonifazi D 2013 Chem. Phys. Chem. 14 2961
[18] El Ouazzani H, Iliopoulos K, Pranaitis M, Krupka O, Smokal V, Kolendo A, Sahraoui B 2011 J. Phys. Chem. B 115 1944
[19] Qian Y, Xiao G M, Wang G, Lin B P, Cui Y, Sun Y M 2007 Dyes Pigments 75 218
[20] Wu S J, Qian W, Xia Z J, Zou Y H, Wang S Q, Shen S Y, Xu H J 2000 Chem. Phys. Lett. 330 535
[21] Zhu B H, Wang F F, Zhang K, Ma G H, Gu Y Z, Guo L J, Qian S X 2008 Acta Phys. Sin. 57 3085 (in Chinese) [朱宝华, 王芳芳, 张琨, 马国宏, 顾玉宗, 郭立俊, 钱世雄 2008 57 3085]
[22] Ran X, Wang H, Lou J, Shi L L, Liu B, Li M, Guo L J 2014 Soft Mater. 12 396
[23] Ji X H, Song X, Li J, Bai Y, Yang W, Peng X 2007 J. Am. Chem. Soc. 129 13939
[24] Sheik-Bahae M, SAID A A, WEI T, Hagan D J, Vanstryland E W 1990 IEEE J. Quant. Elect. 26 760
[25] Agrawal G P, Cojan C, Flytzanis C 1978 Phys. Rev. B 17 776
[26] Sipe J E, Boyd R W 1992 Phys. Rev. A 46 1614
计量
- 文章访问数: 6441
- PDF下载量: 350
- 被引次数: 0